
The critical problem of Kirchhoff type elliptic
equations in dimension four

言語: English

出版者: OCAMI

公開日: 2019-10-07

キーワード (Ja): 

キーワード (En): Kirchhoff, nonlocal, elliptic, critical,

variational method

作成者: 内免, 大輔

メールアドレス: 

所属: Osaka City University

メタデータ

https://ocu-omu.repo.nii.ac.jp/records/2016803URL



 

 

The critical problem of Kirchhoff type ellipti equations 

in dimension four 

 

Daisuke Naimen 

 

Citation OCAMI Preprint Series 

Issue Date 2013 

Type Preprint 

Textversion Author 

Relation 

The following article has been submitted to Journal of Differential Equations. 

This is not the published version. Please cite only the published version. The article 

has been published in final form at https://doi.org/10.1016/j.jde.2014.05.002 . 

Is version of https://doi.org/10.1016/j.jde.2014.05.002 . 

 

 

From: Osaka City University Advanced Mathematical Institute 

 

http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html  

https://doi.org/10.1016/j.jde.2014.05.002
https://doi.org/10.1016/j.jde.2014.05.002
https://doi.org/10.1016/j.jde.2014.05.002
https://doi.org/10.1016/j.jde.2014.05.002
http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html
http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html


The critical problem of Kirchhoff type elliptic equations
in dimension four

Daisuke Naimen

Department of Mathematics, Graduate School of Science, Osaka City University,
3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, JAPAN

Abstract

We study the following Kirchhoff type elliptic problem,{
−
(
a+ b

∫
Ω
|∇u|2dx

)
∆u = λuq + µu3, u > 0 in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ R4 is a bounded domain with smooth boundary ∂Ω. Moreover we
assume a, λ, µ > 0, b ≥ 0 and 1 ≤ q < 3. In this paper, we prove the existence
of solutions of (P). Our tools are the variational method and the concentration
compactness argument for PS sequences.

Keywords: Kirchhoff, nonlocal, elliptic, critical, variational method

1. Introduction

We investigate a Kirchhoff type elliptic problem,
−
(
a+ b

∫
Ω
|∇u|2dx

)
∆u = λuq + µu3 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P)

where Ω ⊂ R4 is a bounded domain with smooth boundary ∂Ω. We assume
a, λ, µ > 0, b ≥ 0 and 1 ≤ q < 3. In this paper, we prove the existence of
solutions of (P).

Our problem (P) describes the stationary state of the Kirchhoff type quasi-
linear hyperbolic equation such as

∂2u

∂t2
−M

(∫
Ω

|∇u|2dx
)
∆u = f(x, t, u), (P0)
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where M : R+ → R+ is some function. (P0) appears in the theory of the
nonlinear vibrations on physics [15]. The solvability of (P0) is also discussed on
mathematics [6][7][9][14][24] etc. We can refer to the survey [1].

In recent years, the analysis of the stationary problems of (P0) has been
extensively carrying out by many authors, see [2][3][4][10][11][16][17][18][20][21]
[22][26][28][29] and so on. By them, several existence results are successfully
obtained via the variational and topological methods even for the critical case.
But most of them treat only three or less dimensional case except for [3], [10]
and [18]. Here we emphasize that we would treat the 4-dimensional critical
problem (P). In our case, a typical difficulty occurs in proving the existence
of solutions because of the lack of the compactness of the Sobolev embedding
H1

0 (Ω) ↪→ L4(Ω). Furthermore, in view of the corresponding energy, the in-
teraction between the Kirchhoff type perturbation ∥u∥4

H1
0 (Ω)

and the critical

nonlinearity
∫
Ω
u4dx is crucial. In the followings, we can see the effect of such

an interaction on the existence. To our best knowledge, this paper is the first
one which essentially attacks the Brezis-Nirenberg problem for four dimensional
Kirchhoff type equations.

1.1. Statement of results

Firstly we consider the cases q = 1. Let S, λ1 > 0 be the usual Sobolev
constant defined by

inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
u4dx

)1/2 ,
and the principal eigenvalue of −∆ on Ω respectively. Our result is the following.

Theorem 1.1. Let q = 1, a > 0 b ≥ 0, 0 < λ < aλ1 and µ > 0. Then (P) has
a solution if and only if bS2 < µ.

Remark 1.2. Recall the result by Brezis-Nirenberg [8]. In [8], the case a = 1,
b = 0 and µ = 1 is considered. Theorem 1.1 gives an extension of their result
to the Kirchhoff type problem for 4-dimensional case.

As we shall see in Section 2, the proof of Theorem 1.1 is successfully straight-
forward. The problems lie in the case 1 < q < 3. Certainly, we can confirm
the existence if a, λ, µ > 0 and b = 0 by [8]. Thus here we only deal with the
case b > 0. In this case, the boundedness of the PS sequences is hard to prove.
Hence inspired by [17], we consider the problem

−
(
a+ b

∫
Ω
|∇u|2dx

)
∆u = ν(λuq + µu3) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pν)

where ν ∈ (δ, 1] for some 1/2 < δ < 1. By the aid of the result by Jeanjean [13],
we prove the next theorems.
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Theorem 1.3. We suppose 1 < q < 3. Let b, µ > 0 satisfy bS2 < µ < 2bS2 and
take 1/2 < δ < 1 so that bS2/δ < µ. Furthermore, assume one of the following
(C1), (C2) and (C3) holds,

(C1) a > 0 and 0 < λ < λ0 where 0 < λ0 = λ0(a, b, q, µ) ≤ ∞ is chosen
sufficiently small if necessary.

(C2) λ > 0 and a > a0 where a0 = a0(b, q, λ, µ) ≥ 0 is taken sufficiently large
if necessary.

(C3) a > 0, λ > 0 and b0 < b < µ/S2 where µ/(2S2) ≤ b0 = b0(a, q, λ, µ) <
µ/S2 is selected sufficiently large if necessary.

Then (Pν) poses a solution for almost every ν ∈ (δ, 1]. Furthermore we can find
an increasing sequence (νn) ⊂ (δ, 1] such that νn → 1 as n → ∞ and (Pν) with
ν = νn has a solution un and further, which shows one of the followings,

(i) un → ∞ in H1
0 (Ω) as n → ∞,

(ii) un is bounded in H1
0 (Ω) and consequently, (P) has a solution.

Remark 1.4. In Theorem 1.3, we give the condition bS2 < µ < 2bS2 on
b, µ > 0. Comparing to that in Theorem 1.1, we can see an additional part such
as µ < 2bS2. This condition is used to get the appropriate local compactness of
our PS sequences. See the proof of Lemma 3.2. Note that it is also considered
in the proof of Theorem 1.6 below.

Remark 1.5. Let 1 < q < 3 and b, µ satisfy the hypothesis in Theorem 1.3 and
put

g(t) :=
aµ

2(µ− bS2)
t2 − λ

(q + 1)S
(q+1)/2
q+1

tq+1 +
µ(2bS2 − µ)

4S2(µ− bS2)
t4,

where

Sq+1 := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|q+1dx

) 2
q+1

.

Firstly, fix a > 0. Then it is enough if we choose 0 < λ0 = λ0(a, b, q, µ) < ∞
so small that if 0 < λ < λ0, g(t) ≥ 0 for all t ≥ 0. Next fix λ > 0. Then
it is sufficient if we choose a0 = a0(b, q, λ, µ) > 0 so large that if a > a0,
g(t) ≥ 0 for all t ≥ 0. Finally fix a > 0 and λ > 0. Then it is enough if we set
µ/(2S2) < b0 = b0(a, q, λ, µ) < µ/S2 so large that if b0 < b < µ/S2, g(t) ≥ 0
for all t ≥ 0. We recall these constants a0, λ0 and b0 in Lemma 3.2, Section 3.

We can avoid the possibility of the assertion (i) in Theorem 1.3 if Ω is strictly
star-shaped.

Theorem 1.6. Assume a, b, λ, µ > 0 satisfies the same hypotheses with that in
Theorem 1.3. Furthermore we suppose Ω ⊂ R3 is strictly star-shaped. Then (P)
has a solution.

Recently the Brezis-Nirenberg problem (cf.[8]) for the Kirchhoff type equa-
tions are observed in [2], [10], [20], [21] and [29]. By their works, a certain exten-
sion from the original Brezis-Nirenberg problem to the Kirchhoff type one is ac-
complished for 3-dimensional case. For larger dimensional case, only Figueiredo
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[10] considers the case N ≥ 3 and Ω ⊂ RN . By his argument, we can prove
that (P) with 1 < q < 3, a > 0, b ≥ 0 and µ > 0 has a solution if λ > 0 is
sufficiently large. But the result in [8] says that if 1 < q < 3, a > 0, b = 0 and
µ > 0, (P) has a solution for all λ > 0. Hence we can naturally ask whether
or not the existence result holds if b > 0 and λ > 0 is small or arbitrary. A
positive answer to this question is obtained by Theorem 1.3 and 1.6. Lastly
we note some questions on Theorem 1.3 and 1.6 which still remain unsolved.
They are the followings, (1) whether or not we can choose λ0 = ∞, a0 = 0
and b0 = µ/(2S2), (2) whether or not the additional condition µ < 2bS2, which
unexpectedly can be read as b should not be too small, is essential and further,
(3) the clear answer for the general smooth bounded domain case. These are
the left problems for our future.

1.2. Setting

We put a notion of the weak solutions of (P). We call u ∈ H1
0 (Ω) is a weak

solution of (P), if and only if u satisfies(
a+ b∥u∥2H1

0 (Ω)

)∫
Ω

∇u · ∇hdx− λ

∫
Ω

uq
+hdx− µ

∫
Ω

u3
+hdx = 0

for all h ∈ H1
0 (Ω) where ∥ · ∥H1

0 (Ω) := (
∫
Ω
|∇u|2dx)1/2 and u+ := max{u, 0}.

Applying the usual elliptic regularity theories and strong maximum principle,
we can conclude that every weak solution of (P) belongs to C2(Ω) and positive.
Moreover we define the associated functional I on H1

0 (Ω) so that

I(u) :=
a

2
∥u∥2H1

0 (Ω) +
b

4
∥u∥4H1

0 (Ω) −
λ

q + 1

∫
Ω

uq+1
+ dx− µ

4

∫
Ω

u4
+dx (u ∈ H1

0 (Ω)).

Then we can easily check that I is well-defined and belongs to C1(H1
0 (Ω),R).

Furthermore, every critical point of I is a weak solution of (P). Thus in the
following sections we shall prove the existence of a nontrivial critical point of I.
Similarly we can define the weak solutions of (Pν) and the associated functional
Iν .

1.3. A description of PS sequences

In the present papers [10][20][21] etc., they investigate the compactness
conditions of their PS sequences through Lions’ second concentration com-
pactness lemma [19]. In this paper, to understand the features of PS se-
quences for Kirchhoff type critical problems more clearly, we rather introduce
a complete description of the PS sequences, following the argument in [25].
Here we define the Sobolev space D1,2(R4) as usual and write its norm as

∥ · ∥D1,2(R4) :=
(∫

R4 |∇ · |2dx
)1/2

.

Proposition 1.7. Let c ∈ R and (un) ⊂ H1
0 (Ω) ⊂ D1,2(R4) be a bounded

(PS)c sequence for I, that is, I(un) → c, I ′(un) → 0 in H−1(Ω) and ∥un∥H1
0 (Ω)

is bounded. Then (un) has a subsequence which strongly converges in H1
0 (Ω),
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or otherwise, there exist a nonnegative function u0 ∈ H1
0 (Ω) which is a weak

convergence of un, a number k ∈ N and further, for every i ∈ {1, 2, · · · , k},
a sequence of values (Ri

n)n∈N ⊂ R+, points (xi
n)n∈N ⊂ Ω and a nonnegative

function vi ∈ D1,2(R4) satisfying

−

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

∆u0 = λuq
0 + µu3

0 in Ω, (1)

−

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

∆vi = µv3i in R4, (2)

such that up to subsequences, there hold Ri
ndist(x

i
n, ∂Ω) → ∞,∥∥∥∥∥un − u0 −

k∑
i=1

Ri
nvi(R

i
n(· − xi

n))

∥∥∥∥∥
D1,2(R4)

= o(1),

∥un∥2H1
0 (Ω) = ∥u0∥2H1

0 (Ω) +
k∑

i=1

∥vi∥2D1,2(R4) + o(1)

and

I(un) = Ĩ(u0) +
k∑

i=1

Ĩ∞(vi) + o(1)

where o(1) → 0 as n → ∞ and we define

Ĩ(u0) : =

a

2
+

b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

 ∥u0∥2H1
0 (Ω) −

λ

2

∫
Ω

u2
0dx

− µ

4

∫
Ω

u4
0dx,

(3)

Ĩ∞(vi) :=

a

2
+

b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

 ∥vi∥2D1,2(R4)−
µ

4

∫
R4

v4i dx.

(4)

Remark 1.8. We note that (1), the equation for the weak convergence u0 of
un, depends on the nonlocal information of all bubbles,

b

k∑
j=1

∥vj∥2D1,2(R4).

This implies that, if b > 0 and (un) poses no subsequence which strongly con-
verges in H1

0 (Ω), the weak convergence u0 of un is never a critical point of I

5



because of the presence of bubbles, differently from the case b = 0. We also
emphasize that in view of (3), the “energy” of the weak convergence u0 has the
cross term such as

b

4

(
k∑

i=1

∥vi∥2D1,2(R4)

)
∥u0∥2H1

0 (Ω).

Observe also that similar phenomena are confirmed in the limiting problem (2)
for bubbles and the energies (4) of those. These are the features of the PS
sequences of the Kirchhoff type critical problem. In the proof of Theorem 1.3,
the careful analysis of such phenomena plays important role. In particular, see
the proof of Lemma 3.2 in Section 3.

In Section 4, we argue with the details of this compactness result for a general
dimensional problem.

1.4. Organization of this paper

This paper is organized as follows. In Section 2, we consider the case q = 1
and give the proof of Theorem 1.1. In Section 3, we treat the case 1 < q < 3 and
show the proof of Theorem 1.3 and 1.6. In addition, in Section 4, we give the
global compactness result for the Kirchhoff type critical problem in the general
dimension.

2. The case q = 1

In this section, we deal with the case q = 1 and prove Theorem 1.1. The
conclusion for the case b = 0 is obtained by [8]. Hence we only consider the case
b > 0. Let a, b, λ, µ > 0 with λ < aλ1. As we say in Section 1, we shall prove
the existence of a nontrivial critical point of the functional

I(u) =
a

2
∥u∥2H1

0 (Ω) +
b

4
∥u∥4H1

0 (Ω) −
λ

2

∫
Ω

u2
+dx− µ

4

∫
Ω

u4
+dx.

Here we mainly treat the existence part of Theorem 1.1. For this, once we
assume bS2 < µ, the proof is completely straightforward. To the first, we
ensure the following local compactness result.

Lemma 2.1. Let a, b, λ, µ > 0 satisfy λ < aλ1 and bS2 < µ. Then if (un) ⊂
H1

0 (Ω) is a (PS)c sequence for I with

c <
(aS)2

4(µ− bS2)
,

then (un) strongly converges in H1
0 (Ω) up to subsequences.

Proof. Let (un) ⊂ H1
0 (Ω) be a (PS)c sequence for I with

c <
(aS)2

4(µ− bS2)
.

6



We first claim that (un) is bounded in H1
0 (Ω). In fact, by the definition and the

Poincare inequality, we have

c+ 1 ≥ I(un)−
1

4
⟨I ′(un), un⟩+

1

4
⟨I ′(un), un⟩

≥ a

4

(
1− λ

aλ1

)
∥un∥2H1

0 (Ω) − ∥un∥H1
0 (Ω)

for large n ∈ N. Since λ < aλ1, this proves our claim. Now we suppose
on the contrary that we can extract no subsequence from (un) which strongly
converges in H1

0 (Ω). Then from Proposition 1.7, there exist a nonnegative
weak convergence u0 ∈ H1

0 (Ω) of un, a number k ∈ N and further, for every
i ∈ {1, 2, · · · , k}, a sequence of values (Ri

n)n∈N ⊂ R+, points (xi
n)n∈N ⊂ Ω and

a nonnegative function vi ∈ D1,2(R4) satisfying (1) and (2) such that up to
subsequences, there holds

I(un) = Ĩ(u0) +

k∑
i=1

Ĩ∞(vi) + o(1), (5)

where o(1) → 0 as n → ∞ and we put Ĩ(u0) and Ĩ∞(vi) as in Proposition 1.7.
Then we claim

Ĩ(u0) ≥ 0 (6)

and

Ĩ∞(vi) ≥
(aS)2

4(µ− bS2)
(7)

for all i ∈ {1, 2, · · · , k}. First we prove (6). Noting (1), (3) and using the
Poincare inequality, we have

Ĩ(u0) = Ĩ(u0)−
1

4

{
(a+ bA)

∫
Ω

|∇u0|2dx− λ

∫
Ω

u2
0x− µ

∫
Ω

u4
0dx

}
≥ a

4

(
1− λ

aλ1

)
∥u0∥2H1

0 (Ω),

where A := ∥u0∥2H1
0 (Ω)

+
∑k

i=1 ∥vi∥2D1,2(R4) for simplicity. Since λ < aλ1, we

conclude (6). Next we prove (7). From (2) and the Sobolev inequality, we get

0 = (a+ bA) ∥vi∥2D1,2(RN ) − µ

∫
R4

v4i dx

≥ a∥vi∥2D1,2(RN ) + b∥vi∥4D1,2(RN ) − µS−2∥vi∥4D1,2(RN )

≥ a∥vi∥2D1,2(RN ) − S−2(µ− bS2)∥vi∥4D1,2(RN ).

Thus noting bS2 < µ, we obtain

∥vi∥2D1,2(RN ) ≥
aS2

µ− bS2
. (8)

7



Moreover (2) and (4) imply

Ĩ∞(vi) = Ĩ∞(vi)−
1

4

{
(a+ bA)

∫
R4

|∇vi|2dx− µ

∫
R4

v4i dx

}
≥ a

4
∥vi∥2D1,2(R4).

Using (8), we ensure (7). Finally, it follows from (5), (6) and (7),

c = lim
n→∞

I(un)

= Ĩ(u0) +
k∑

i=1

Ĩ∞(vi)

≥ (aS)2

4(µ− bS2)
,

a contradiction. This finishes the proof.

Here with no loss of generality we can assume 0 ∈ Ω. Owing to [8], we
introduce the Talenti function [27] cut off appropriately,

uε(x) :=
ετ(x)

ε2 − |x|2
∈ H1

0 (Ω)

where ε > 0 and τ ∈ C∞
0 (Ω) is an appropriate cut off function such that

0 ≤ τ ≤ 1 and τ(x) = 1 on some neighborhood of 0 ∈ Ω. Then we put

vε := uε/
(∫

Ω
u4
εdx
)1/4

and obtain
∫
Ω
|∇vε|2dx = S +O(ε2),∫

Ω
v4εdx = 1,∫

Ω
v2εdx = α1ε

2| log ε|+O(ε2),

(9)

where α1 > 0 is some constant.
The next lemma will confirm a mountain pass level of I is below the desired

energy level.

Lemma 2.2. Let a, b, λ, µ > 0 satisfy µ > bS2. Then there exists a constant
ε1 > 0 such that

sup
t≥0

I(tvε) <
(aS)2

4(µ− bS2)

for all ε ∈ (0, ε1).

Proof. We consider vε defined as above. Noting µ > bS2 and (9) we estimate,

I(tvε) ≤
a
(
S − λα1ε

2| log ε|+O(ε2)
)

2
t2 −

(
µ− bS2 +O(ε2)

)
4

t4

≤ (aS)2 − 2λa2Sα1ε
2| log ε|+O(ε2)

4(µ− bS2 +O(ε2))

≤ (aS)2

4(µ− bS2)
− λa2Sα1

2(µ− bS2)
ε2| log ε|+O(ε2)

8



for all t ≥ 0. Thus there exists a constant ε1 > 0 such that

sup
t≥0

I(tvε) <
(aS)2

4(µ− bS2)

for all ε ∈ (0, ε1). This concludes the proof.

Remark 2.3. Recall the argument by Brezis-Nirenberg [8]. In [8], they choose
the Talenti function which attains the Sobolev constant

S = inf
u∈D1,2(R4)\{0}

∫
R4 |∇u|2dx(∫
Ω
u4dx

) 1
2

,

and successfully show a mountain pass level below the desired energy level. Here,
observe that (by trivial rescaling), the function can be regarded as the positive
solution of the problem in whole space,

−∆U = U3 in R4, U(x) → 0 as |x| → ∞,

which is given by

Uε :=
8

1
2 ε

ε2 + | · −x0|2

for some ε > 0 and x0 ∈ R4. As a matter of the fact, when µ = 1 (for simplicity)
and 1 > bS2, the Talenti function multiplied by an appropriate constant,

Wε :=

(
a

1− bS2

) 1
2

Uε,

is nothing but a solution of the Kirchhoff type equation in whole space,

−
(
a+ b∥W∥2D1,2(R4)

)
∆W = W 3 in R4, W (x) → 0 as |x| → ∞.

Moreover we can easily check that the energy of Wε satisfies

a

2
∥Wε∥2D1,2(R4) +

b

4
∥Wε∥4D1,2(R4) −

1

4

∫
R4

W 4
ε dx =

(aS)2

4(1− bS2)
.

Thus similarly to [8], it is reasonable to choose the Talenti function to estimate
the mountain pass level for our problem. Actually, we get the desired conclusion
as in the previous lemma.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Take a, b, λ, µ > 0 with λ < aλ1. First we assume µ >
bS2. In this case, we apply the mountain pass lemma [5]. As usual, we shall
ensure the mountain pass geometry of I, that is, I(0) = 0 and

(1) there exist constants α, ρ > 0 such that I(u) ≥ α for all u ∈ H1
0 (Ω) with

∥u∥H1
0 (Ω) = ρ,

9



(2) there exists a function e0 ∈ H1
0 (Ω) such that ∥e0∥H1

0 (Ω) > ρ and I(e0) ≤ 0.

Firstly, let us cofirm (1). To do this, take ρ > 0. Then for all u ∈ H1
0 (Ω) with

∥u∥H1
0 (Ω) = ρ, we have by the Poincare inequality and the Sobolev inequality,

I(u) ≥ a

2

(
1− λ

aλ1

)
∥u∥2H1

0 (Ω) −
1

4S2

(
µ− bS2

)
∥u∥4H1

0 (Ω)

=
a

2

(
1− λ

aλ1

)
ρ2 − 1

4S2

(
µ− bS2

)
ρ4.

Noting λ < aλ1, we get (1). Next suppose ε ∈ (0, ε1) and t ≥ 0 where ε1 > 0
is taken from Lemma 2.2. Using (9) and the assumption µ > bS2, and further,
taking ε1 > 0 smaller if necessary, we obtain

I(tvε) ≤
a∥vε∥2H1

0 (Ω)

2
t2 −

(
µ− b∥vε∥4H1

0 (Ω)

)
4

t4

=
a(S +O(ε2))

2
t2 −

(
µ− bS2 +O(ε2)

)
4

t4

≤ aSt2 − (µ− bS2)

8
t4,

for all ε ∈ (0, ε1). We fix such a ε. Then it follows from the above inequality,
I(tvε) → −∞ as t → ∞. Thus choosing t0 > 0 sufficiently large and putting
e0 := t0vε we have a function e0 ∈ H1

0 (Ω) satisfying (2). Now we define

Γ := {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = 0, γ(1) = e0},

c := inf
γ∈Γ

max
u∈γ([0,1])

I(u) > 0.

Then Lemma 2.2 implies

c <
(aS)2

4(µ− bS2)
.

Thus from Lemma 2.1, I satisfies the (PS)c condition. Consequently the moun-
tain pass theorem concludes the proof. Next, we suppose µ ≤ bS2 and u > 0 in
Ω is a solution of (P). Then the Poincare inequality and the Sobolev inequality
imply

0 = a∥u∥2H1
0 (Ω) + b∥u∥4H1

0 (Ω) − λ

∫
Ω

u2dx− µ

∫
Ω

u4dx

≥ a

(
1− λ

aλ1

)
∥u∥2H1

0 (Ω) +

(
bS2 − µ

)
S2

∥u∥4H1
0 (Ω).

Since 0 < λ < aλ1 and µ ≤ bS2, we have u = 0, a contradiction. This completes
the proof.
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3. The case 1 < q < 3

In this section, we consider the case 1 < q < 3 and prove Theorem 1.3
and 1.6. To do this, we assume a, b, λ, µ > 0 satisfy bS2 < µ < 2bS2 and fix
1/2 < δ < 1 so that bS2/δ < µ. Then for ν ∈ (δ, 1], we consider the problem
(Pν). The associated functional is defined by

Iν(u) :=
a

2
∥u∥2H1

0 (Ω) +
b

4
∥u∥4H1

0 (Ω) −
νλ

q + 1

∫
Ω

uq+1
+ dx− νµ

4

∫
Ω

u4
+dx.

We prove the existence of a nontrivial critical point of Iν . In this case, the
boundedness of the PS sequences for Iν is hard to get. To avoid this difficulty,
we introduce the result by Jeanjean [13].

Theorem 3.1 (Jeanjean[13]). Let X be a Banach space equipped with the norm
∥ · ∥ and let J ⊂ R+ be an interval. We consider a family (Iν)ν∈J of C1-
functionals on X of the form

Iν(u) = A(u)− νB(u) (ν ∈ J)

where B(u) ≥ 0 for all u ∈ X and such that A(u) → +∞ or B(u) → +∞ as
∥u∥ → ∞. We assume there are two points (e1, e2) in X such that setting

Γ = {γ ∈ C([0, 1], X), γ(0) = e1, γ(1) = e2}

there holds, for all ν ∈ J

cν := inf
γ∈Γ

max
t∈[0,1]

Iν(γ(t)) > max{Iν(e1), Iν(e2)}.

Then, almost every ν ∈ J , there is a sequence (un) ⊂ X such that

(i) (un) is bounded, (ii)Iν(un) → cν , (iii) I ′ν(un) → 0 in the dual X−1 of X.

With the help of Theorem 3.1, we can get the bounded PS sequences for Iν
for almost all ν ∈ (δ, 1]. Here we prove the local compactness of those.

Lemma 3.2. Let b > 0, µ > 0 satisfy bS2 < µ < 2bS2 and take 1/2 < δ < 1
so that bS2/δ < µ. Furthermore choose constants 0 < λ0 = λ0(a, b, q, µ) < ∞,
a0 = a0(b, q, λ, µ) > 0 and µ/(2S2) < b0 = b0(a, q, λ, µ) < µ/S2 as in Remark
1.5 and assume one of the following (C1), (C2) and (C3) holds,

(C1) a > 0 and 0 < λ < λ0,

(C2) λ > 0 and a > a0.

(C3) a, λ > 0 and b0 < b < µ/S2

Then if (un) is a bounded (PS)c sequence for Iν with ν ∈ (δ, 1] and

c <
(aS)2

4(νµ− bS2)
,

then (un) strongly converges in H1
0 (Ω) up to subsequences.

11



Remark 3.3. Here we use our condition µ < 2bS2 which is the different point
from the case q = 1.

Proof. We assume on the contrary that we can extract no subsequence from
(un) which converges in H1

0 (Ω). Then similarly to Proposition 1.7, there exist a
nonnegative weak convergence u0 ∈ H1

0 (Ω) of un, a number k ∈ N and further,
for every i ∈ {1, 2, · · · , k}, a sequence of values (Ri

n)n∈N ⊂ R+, points (xi
n)n∈N ⊂

Ω and a nonnegative function vi ∈ D1,2(R4) satisfying

−

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

∆vi = νµv3i in R4, (10)

such that up to subsequences,

Iν(un) = Ĩν(u0) +
k∑

i=1

Ĩ∞ν (vi) + o(1) (11)

where o(1) → 0 as n → ∞ and we put

Ĩν(u0) :=

a

2
+

b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

 ∥u0∥2H1
0 (Ω)

− νλ

q + 1

∫
Ω

uq+1
0 dx− νµ

4

∫
Ω

u4
0dx,

Ĩ∞ν (vi) : =

a

2
+

b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

 ∥vi∥2D1,2(R4)

− νµ

4

∫
R4

v4i dx.

(12)

Here we note that, since 1 < q < 3, it is not obvious whether or not Ĩν(u0) ≥ 0,
differently from the case q = 1 (see the proof of Lemma 2.1). To overcome
this difficulty, we shall estimate the energy of our PS sequence more precisely,
including the “cross terms” which we indicate in Subsection 1.3. Now we claim

Ĩ(vi) ≥
(aS)2

4(νµ− bS2)
+

abS2

4(νµ− bS2)
∥u0∥2H1

0 (Ω) (13)

for all i ∈ {1, 2, · · · , k}. In fact, similarly to the proof of (7), using (10) and the
Sobolev inequality, we have

0 =

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(R4)

 ∥vi∥2D1,2(R4) − νµ

∫
R4

v4i dx

≥ ∥vi∥2D1,2(R4)

{(
a+ b∥u0∥2H1

0 (Ω)

)
− S−2

(
νµ− bS2

)
∥vi∥2D1,2(R4)

}
,

12



for all i ∈ {1, 2, · · · , k}. In this case, we estimate

∥vi∥2D1,2(R4) ≥

(
a+ b∥u0∥2H1

0 (Ω)

)
S2

νµ− bS2
. (14)

Consequently, (10), (12) and (14) imply

Ĩ∞ν (vi) ≥
a

4
∥vi∥2D1,2(R4)

≥ (aS)2

4(νµ− bS2)
+

abS2

4(νµ− bS2)
∥u0∥2H1

0 (Ω),

for all i ∈ {1, 2, · · · , k}. This is (13). Next using (14) and the Sobolev inequali-
ties, we get for some i ∈ {1, 2, · · · , k},

Ĩν(u0) ≥
a

2
∥u0∥2H1

0 (Ω) +
b

4

(
∥u0∥2H1

0 (Ω) + ∥vi∥2D1,2(R4)

)
∥u0∥2H1

0 (Ω)

− νλ

q + 1

∫
Ω

uq+1
0 dx− νµ

4

∫
Ω

u4
0dx

≥ a

(
1

2
+

bS2

4 (νµ− bS2)

)
∥u0∥2H1

0 (Ω) −
νλ

(q + 1)S
(q+1)/2
q+1

∥u0∥q+1
H1

0 (Ω)

+
µν
(
2bS2 − νµ

)
4S2 (νµ− bS2)

∥u0∥4H1
0 (Ω).

(15)

Then it follows from (11), (13) and (15) that

c = lim
n→∞

Iν(un)

≥ Ĩν(u0) + Ĩ∞ν (vi)

≥ (aS)
2

4(νµ− bS2)
+

aµ

2 (µ− bS2)
∥u0∥2H1

0 (Ω) −
λ

(q + 1)S
(q+1)/2
q+1

∥u0∥q+1
H1

0 (Ω)

+
µ
(
2bS2 − µ

)
4S2 (µ− bS2)

∥u0∥4H1
0 (Ω),

here for the last inequality, we use the fact ν ≤ 1. Observe that, the coefficient
of ∥u0∥4H1

0 (Ω)
in the right hand side of the last inequality is positive thanks to

our assumption bS2 < µ < 2bS2. Finally (C1), (C2) or (C3) shows

c ≥ (aS)
2

4 (νµ− bS2)
,

a contradiction. Thus (un) strongly converges in H1
0 (Ω) up to subsequences.

This completes the proof.

As Section 2, we prove a mountain pass level of Iν is below the desired energy
level.
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Lemma 3.4. Let a, b, λ, µ > 0 satisfy bS2 < µ and take 1/2 < δ < 1 so that
bS2/δ < µ. We suppose ν ∈ (δ, 1]. Then there exists a constant ε2 > 0 such
that

sup
t≥0

Iν(tvε) <
(aS)2

4 (νµ− bS2)

for all ε ∈ (0, ε2), where vε is defined as previous section.

Proof. First observe that we have the estimate∫
Ω

vq+1
ε dx = α2ε

3−q,

where α2 > 0 is some constant. Here, using (9), we can easily check that there
exists a constant ε2 > 0 such that we can find constants 0 < τ0 < T0 such as

Iν(tvε) <
(aS)2

8 (νµ− bS2)

for all 0 ≤ t ≤ τ0 and all t ≥ T0 if ε ∈ (0, ε2). Noting this, we consider only
t ∈ (τ0, T0). As bS

2 < νµ, we have

Iν(tvε) ≤
aS

2
t2 −

(
νµ− bS2

)
4

t4 − Cα2ε
3−q +O(ε2)

≤ (aS)2

4(νµ− bS2)
− Cα2ε

3−q +O(ε2),

for some constant C > 0 which is independent of ε ∈ (0, ε2). Then since
1 < q < 3, taking ε2 > 0 smaller if necessary, we conclude

sup
t≥0

Iν(tvε) <
(aS)2

4(νµ− bS2)
,

for all ε ∈ (0, ε2). This finishes the proof.

We prove Theorem 1.3.

The proof of Theorem 1.3. Let b, µ > 0 satisfy bS2 < µ < 2bS2. Choose 1/2 <
δ < 1 so that bS2/δ < µ and suppose ν ∈ (δ, 1]. Furthermore assume one of
(C1)-(C3) in Lemma 3.2 holds. To apply Theorem 3.1, we confirm the mountain
pass geometry of Iν which is determined independently of ν ∈ (δ, 1]. To do this,
first assume ρ > 0 and take u ∈ H1

0 (Ω) with ∥u∥H1
0 (Ω) = ρ. Then as ν ≤ 1, the

Sobolev embeddings imply

I(u) ≥ a

2
∥u∥2H1

0 (Ω) −
λ

(q + 1)S
(q+1)/2
q+1

∥u∥q+1
H1

0 (Ω)
− µ− bS2

4S2
∥u∥4H1

0 (Ω)

≥ a

2
ρ2 − λ

(q + 1)S
(q+1)/2
q+1

ρq+1 − µ− bS2

4S2
ρ4.

Since 1 < q < 3 and the right hand side of the last inequality is independent of
ν ∈ (δ, 1], we conclude that
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(a) there exist constants α, ρ > 0 such that Iν(u) ≥ α for all u ∈ H1
0 (Ω) with

∥u∥H1
0 (Ω) = ρ and all ν ∈ (δ, 1].

Next noting δ < ν ≤ 1 and (9), we get for all t > 0,

Iν(tvε) ≤
a∥vε∥2H1

0 (Ω)

2
t2 +

b∥vε∥4H1
0 (Ω)

4
t4 − δµ

4
t4

=
a
(
S +O(ε2)

)
2

t2 −
(
δµ− bS2 +O(ε2)

)
4

t4.

Now take ε2 > 0 which is determined in Lemma 3.4. Then since δµ > bS2,
taking ε2 > 0 smaller if necessary, we have

Iν(tvε) ≤ aSt2 − (δµ− bS2)

8
t4.

for all ε ∈ (0, ε2). Then we fix such a ε and get Iν(tvε) → −∞ as t → ∞
uniformly for ν ∈ (δ, 1]. Therefore there exists a constant t0 > 0 such that if
we put e0 := t0vε, ∥e0∥H1

0 (Ω) > ρ and Iν(e0) ≤ 0 for all ν ∈ (δ, 1]. Now we can
define

Γ := {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = 0, γ(1) = e0},

cν := inf
γ∈Γ

max
u∈γ([0,1])

Iν(u).

Observe that cν > 0 for all ν ∈ (δ, 1] from (a). Consequently, utilizing Theorem
3.1, we have a bounded PS sequence of Iν for almost every ν ∈ (δ, 1]. Further-
more by Lemma 3.2, 3.4 and the definition of cν , our bounded (PS)cν sequence
strongly converges to some nontrivial function in H1

0 (Ω) up to subsequences and
thus, Iν has a nontrivial critical point for almost every ν ∈ (δ, 1]. Then we can
take an increasing sequence (νn) ⊂ (δ, 1] such that νn → 1 as n → ∞ and for
every n ∈ N, there exists a nontrivial critical point un of Iνn with critical value
cνn . Note that by the continuity, cνn → c1 as n → ∞ (see Lemma 2.3 in [13]).
Then

I1(un) = Iνn(un) + (1− νn)

(
λ

q + 1

∫
Ω

(un)
q+1
+ dx+

µ

4

∫
Ω

(un)
4
+dx

)
= c1 + o(1)

where o(1) → 0 as n → ∞. Similarly,

I ′1(un) = I ′νn
(un) + o(1) = o(1)

where o(1) → 0 in H−1(Ω) as n → ∞. Here we assume ∥un∥H1
0 (Ω) is bounded.

Then (un) is a bounded (PS)c1 sequence for I1. Then Lemma 3.2, 3.4 and the
definition of c1 conclude the proof.

We can get the boundedness of the sequence of solutions (un) above, if Ω is
strictly star-shaped.
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The proof of Theorem 1.6. Assume Ω ⊂ R4 is strictly star-shaped and take a
sequence of values (νn) ⊂ (δ, 1] and corresponding solutions (un) ⊂ H1

0 (Ω) as
in the proof of Theorem 1.3. Our aim is to prove (un) is bounded in H1

0 (Ω).
We argue by the contradiction. Suppose ∥un∥H1

0 (Ω) → ∞ as n → ∞. We put
wn := un/∥un∥H1

0 (Ω). Then wn ≥ 0, ∥wn∥H1
0 (Ω) = 1 and consequently, there

exists a nonnegative function w0 ∈ H1
0 (Ω) such that wn ⇀ w0 weakly in H1

0 (Ω)
up to subsequences. Since wn satisfies(

a

∥un∥2H1
0 (Ω)

+ b

)∫
Ω

∇wn·∇hdx =
νnλ

∥un∥3−q
H1

0 (Ω)

∫
Ω

wq
nhdx+νnµ

∫
Ω

w3
nhdx (16)

for all h ∈ H1
0 (Ω), taking n → ∞, we get

b

∫
Ω

∇w0 · ∇hdx = µ

∫
Ω

w3
0h.

As Ω is strictly star-shaped, we have w0 = 0 from the result by Pohozaev [23].
Furthermore, it follows from (16) and the argument in [25] that there exists a
number l ∈ N and for every i ∈ {1, 2, · · · , l}, a sequence of values (Ri

n)n∈N ⊂ R+,
points (xi

n)n∈N ⊂ Ω with Ri
ndist(x

i
n, ∂Ω) → ∞ as n → ∞, and a nonnegative

function vi ∈ D1,2(R4) satisfying

−b∆vi = µv3i in R4,

such that up to subsequences,

1 = ∥wn∥2H1
0 (Ω) =

l∑
i=1

∥vi∥2D1,2(R4) + o(1), (17)

where o(1) → 0 as n → ∞. Since ṽi := (µ/b)1/2v ∈ D1,2(R4) is a nonnegative
solution of

−∆ṽ = ṽ3 in R4, w(x) → 0 as |x| → ∞, (18)

the uniqueness result from [12] implies that there exist a constant εi > 0 and a
point xi ∈ R4 such that

ṽi(x) =
8

1
2 εi

ε2i + |x− xi|2
.

Therefore we have

∥vi∥2D1,2(R4) =
b

µ
∥ṽi∥2D1,2(R4) =

bS2

µ
,

for all i ∈ {1, 2, · · · , l}. Then from (17), we get

1 =
lbS2

µ
,

for l ∈ N which is impossible since bS2 < µ < 2bS2. This is a contradiction.
Thus (un) is bounded in H1

0 (Ω). Then Theorem 1.3 completes the proof.
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4. A global compactness result

In this last section, we give the description of PS sequences for the Kirchhoff
type critical problem and show the global compactness result. To this aim, we
consider the problem{

−
(
a+ b

∫
Ω
|∇u|2

)
∆u = λu+ |u|2∗−2u in Ω,

u = 0 on ∂Ω,
(PN )

where Ω ⊂ RN with N ≥ 3 is a bounded domain with smooth boundary ∂Ω
and further, we assume a > 0, b ≥ 0, λ ∈ R and 2∗ = 2N/(N − 2) is the critical
exponent of the Sobolev embedding H1

0 (Ω) ↪→ Lp(Ω). The energy functional
associated to (PN ) is given by

I(u) :=
1

2
∥u∥2H1

0 (Ω) +
b

4
∥u∥4H1

0 (Ω) −
λ

2

∫
Ω

u2dx− 1

2∗

∫
Ω

|u|2
∗
dx,

where ∥ · ∥H1
0 (Ω) := (

∫
Ω
|∇u|2dx)1/2. Following the argument in [25], we firstly

give the complete description of PS sequences for I. Here similarly to the
previous sections, we introduce the Sobolev space D1,2(RN ) as usual and put

its norm as ∥ · ∥D1,2(RN ) :=
(∫

RN |∇ · |2dx
)1/2

.

Theorem 4.1. Let (un) ⊂ H1
0 (Ω) ⊂ D1,2(RN ) be a bounded PS sequence for I.

Then (un) has a subsequence which converges strongly in H1
0 (Ω) or otherwise,

there exist a function u0 ∈ H1
0 (Ω) which is a weak convergence of un, a number

k ∈ N and further, for every i ∈ {1, 2, · · · , k}, a sequence of values (Ri
n)n∈N ⊂

R+, points (xi
n)n∈N ⊂ Ω and a function vi ∈ D1,2(RN ) which satisfy

−

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(RN )

∆u0 = λu0 + |u0|2
∗−2u in Ω,

−

a+ b

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(RN )

∆vi = |vi|2
∗−2vi in RN , (19)

such that up to subsequences, Ri
ndist(x

i
n, ∂Ω) → ∞ as n → ∞,∥∥∥∥∥un − u0 −

k∑
i=1

(Ri
n)

N−2
2 vi(R

i
n(· − xi

n))

∥∥∥∥∥
D1,2(RN )

= o(1),

∥un∥2H1
0 (Ω) = ∥u0∥2H1

0 (Ω) +

k∑
i=1

∥vi∥2D1,2(RN ) + o(1),

and

I(un) = Ĩ(u0) +

k∑
i=1

Ĩ∞(vi) + o(1),
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where o(1) → 0 as n → ∞ and we put

Ĩ(u0) :=
a

2
∥u0∥2H1

0 (Ω) +
b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(RN )

 ∥u0∥2H1
0 (Ω)

− λ

2

∫
Ω

u2
0dx− 1

2∗

∫
Ω

|u0|2
∗
dx,

Ĩ∞(vi) :=
a

2
∥vi∥2D1,2(RN ) +

b

4

∥u0∥2H1
0 (Ω) +

k∑
j=1

∥vj∥2D1,2(RN )

 ∥vi∥2D1,2(RN )

− 1

2∗

∫
RN

|vi|2
∗
dx.

(20)

Remark 4.2. In Theorem 4.1 if we additionally assume that un ≥ 0, then u0

and vi are nonnegative. Furthermore if we consider the functional

I+(u) :=
a

2
∥u∥2H1

0 (Ω) +
b

4
∥u∥4H1

0 (Ω) −
λ

2

∫
Ω

u2
+dx− 1

2∗

∫
Ω

u2∗

+ dx,

instead of I, we also have u0 and vi are nonnegative.

Remark 4.3. If vi ∈ D1,2(RN ) is nonnegative, then we have ∥vi∥2D1,2(RN ) =

∥vj∥2D1,2(RN ) for all i, j ∈ {1, 2, · · · , k} with i ̸= j. In fact, since vi satisfies (19),

if we put wi := (a+ bA)−(N−2)/4vi where A := ∥u0∥2H1
0 (Ω)

+
∑k

i=1 ∥vj∥2D1,2(RN ),

wi ∈ D1,2(RN ) is a nonnegative solution of

−∆w = w
N+2
N−2 in RN , w(x) → 0 as |x| → ∞.

The uniqueness assertion of the above problem (see [12]) implies that there exist
a constant εi > 0 and a point xi ∈ RN such that

wi =
(N(N − 2)ε2i )

N−2
4

(ε2i + | · −xi|2)
N−2

2

.

Thus we have
∥vi∥2D1,2(RN ) = (a+ bA)

N−2
2 S

N
2 . (21)

Since the right hand side of the above equality is independent of i ∈ {1, 2, · · · , k},
we confirm the claim.

Let us see the global compactness results for the cases N = 3, 4. We note
that the local compactness result for (PN ) with N = 3 is found in [10], [20],
[21], [29] etc., and that for the case N = 4 is treated in previous sections. Here,
we assume un ≥ 0 in Theorem 4.1. It follows from Remark 4.2, 4.3 and (21),

∥vi∥2D1,2(RN ) =
(
a+ b∥u0∥2H1

0 (Ω) + kb∥vi∥2D1,2(RN )

)N−2
2

S
N
2 .
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Consequently we deduce an equation for ∥vi∥D1,2(RN ),

∥vi∥
4

N−2

D1,2(RN )
− kbS

N
N−2 ∥vi∥2D1,2(RN ) −

(
a+ b∥u0∥2H1

0 (Ω)

)
S

N
N−2 = 0. (22)

Firstly let N = 3. Then we have

∥vi∥2D1,2(R3) =
1

2

(
kbS3 +

√
(kbS3)

2
+ 4

(
a+ b∥u0∥2H1

0 (Ω)

)
S3

)
.

Using (19), (20) and the above equality, we get

Ĩ∞(vi) = Ĩ∞(vi)−
1

6

(
a∥vi∥2D1,2(R3) + bA∥vi∥2D1,2(R3) −

∫
Ω

v6i dx

)
=

(
a

3
+

b∥u0∥2H1
0 (Ω)

12

){
1

2

(
kbS3 +

√
(kbS3)

2
+ 4

(
a+ b∥u0∥2H1

0 (Ω)

)
S3

)}

+
kb

12

{
1

2

(
kbS3 +

√
(kbS3)

2
+ 4

(
a+ b∥u0∥2H1

0 (Ω)

)
S3

)}2

=: c∗3

(
a, b, k, ∥u0∥2H1

0 (Ω)

)
.

Observe that the energy of a bubble depends on a, b and further, the num-
ber of all bubbles and the nonlocal information of the weak convergence u0.
Consequently we conclude that if (un) ⊂ H1

0 (Ω) is a (PS)c sequence for I with

c ̸∈
{
Ĩ(u0) + kc∗3

(
a, b, k, ∥u0∥2H1

0 (Ω)

)}
k∈N

,

then we can extract a subsequence from (un) which strongly converges inH1
0 (Ω).

This is a global compactness result for the Kirchhoff type problem in dimension
three. In particular, note that

c∗3

(
a, b, k, ∥u0∥2H1

0 (Ω)

)
≥ c∗3

(
a, b, k, ∥u0∥2H1

0 (Ω)

) ∣∣∣
k=1, ∥u0∥2

H1
0(Ω)

=0

=
1

3

{
1

2

(
bS3 +

√
(bS3)2 + 4aS3

)}
+

b

12

{
1

2

(
bS3 +

√
(bS3)2 + 4aS3

)}2

.

Note also that if λ < aλ1, Ĩ(u0) ≥ 0. Hence in this case, all (PS)c sequences of
I with

c <
1

3

{
1

2

(
bS3 +

√
(bS3)2 + 4aS3

)}
+

b

12

{
1

2

(
bS3 +

√
(bS3)2 + 4aS3

)}2

,
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strongly converges in H1
0 (Ω) up to subsequences. This is a local compactness

assertion for the case N = 3, which is observed in [20], [21] and [29]. Next
suppose N = 4. We use (22) again to get a necessary condition on k ∈ N,

1− kbS2 > 0

and

∥vi∥2D1,2(R4) =

(
a+ b∥u0∥2H1

0 (Ω)

)
S2

1− kbS2
.

Then noting (19), (20) and the above equality, we obtain

Ĩ∞(vi) = Ĩ∞(vi)−
1

4

(
a∥vi∥2D1,2(R4) + bA∥vi∥2D1,2(R4) −

∫
R4

v4i dx

)

=
a
(
a+ b∥u0∥2H1

0 (Ω)

)
S2

4(1− kbS2)

=: c∗4

(
a, b, k, ∥u0∥2H1

0 (Ω)

)
.

Thus if (un) ⊂ H1
0 (Ω) is a PS sequence for I with

c ̸∈
{
Ĩ(u0) + kc∗4

(
a, b, k, ∥u0∥2H1

0 (Ω)

)}
k∈N

,

then (un) has a subsequence which strongly converges in H1
0 (Ω). This is a global

compactness result for the case N = 4. In particular, we can also check that if
λ < aλ1, Ĩ(u0) ≥ 0 and

c∗4

(
a, b, k, ∥u0∥2H1

0 (Ω)

)
≥ c∗4

(
a, b, k, ∥u0∥2H1

0 (Ω)

) ∣∣∣
k=1, ∥u0∥2

H1
0(Ω)

=0

=
(aS)2

4(1− bS2)
.

Thus in this cases, if (un) is a (PS)c sequence for I with

c <
(aS)2

4(1− bS2)
,

then (un) strongly converges in H1
0 (Ω) up to subsequences. This is a local com-

pactness of the PS sequences in dimension four, which is observed in previous
sections.

Remark 4.4. In the larger dimensional case, that is, when N ≥ 5, the behaviors
of PS sequences are drastically different from the cases N = 3, 4. For example,
the energies of bubbles may be negative. Thus it seems to be difficult to get the
clear compactness condition. This suggests that a certain difficulty will occur in
dealing with the larger dimensional critical problems. But at this point, in view
of our main aim of this paper, we rather stop here and proceed to the proof of
Theorem 4.1.
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To prove Theorem 4.1, we introduce the following lemma.

Lemma 4.5. Let A ≥ 0 be a constant and (w0
n) ⊂ H1

0 (Ω) be a sequence such
that

w0
n ⇀ 0 weakly in H1

0 (Ω)

and
J ′(w0

n) → 0 in H−1(Ω),

Ĩ(w0
n) → β ∈ R,

where J, Ĩ ∈ C1(H1
0 (Ω),R) are defined by

J(u) :=
a+ bA

2
∥u∥2H1

0 (Ω) −
λ

2

∫
Ω

u2dx− 1

2∗

∫
Ω

|u|2
∗
dx,

Ĩ(u) :=
a

2
∥u∥2H1

0 (Ω) +
bA

4
∥u∥2H1

0 (Ω) −
λ

2

∫
Ω

u2dx− 1

2∗

∫
Ω

|u|2
∗
dx.

Then if we can choose no subsequence from (w0
n) which strongly converges to 0

in H1
0 (Ω), there exist a sequence of values (Rn)n∈N ⊂ R+, points (xn)n∈N ⊂ Ω,

a function v0 ∈ D1,2(RN ) which satisfy

−(a+ bA)∆v0 = |v0|2
∗−2v0 in RN

and further, a sequence of functions (wn) ⊂ H1
0 (Ω) such that Rndist(xn, ∂Ω) →

∞ as n → ∞,
wn ⇀ 0 weakly in H1

0 (Ω),

wn = w0
n − (Rn)

N−2
2 v0(Rn(· − xn)) + o(1) in D1,2(RN ),

∥wn∥2H1
0 (Ω) = ∥w0

n∥2H1
0 (Ω) − ∥v0∥2D1,2(RN ) + o(1)

and
J ′(wn) = o(1) in H−1(Ω),

Ĩ(wn) = β − Ĩ∞(v0) + o(1)

up to subsequences.

Proof. Similar to that in [25].

Proof of Theorem 4.1. Let (un) ⊂ H1
0 (Ω) be a bounded (PS)c sequence for I.

Then there exists a constant A ≥ 0 and a function u0 ∈ H1
0 (Ω) such that

∥un∥2H1
0 (Ω)

→ A and un ⇀ u0 weakly in H1
0 (Ω) up to subsequences. We put

w0
n := un − u0 and then have, w0

n ⇀ 0 weakly in H1
0 (Ω). If we can extract a

subsequence so that w0
n → 0 strongly in H1

0 (Ω), the proof is finished. If not,
using the Vitali’s convergence theorem, we get

J ′(w0
n) = I ′(un)− J ′(u0) + o(1) = o(1) in H−1(Ω)
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here we use the facts that A = ∥un∥2H1
0 (Ω)

+ o(1) as n → ∞ and u0 is a critical

point of J . Furthermore, noting the weak convergence, similarly we have

Ĩ(w0
n) = I(un)− Ĩ(u0) + o(1) = c− Ĩ(u0) + o(1)

where o(1) → 0 as n → ∞. Thus from Lemma 4.5, there exist a sequence of
values (R1

n)n∈N, points (x
1
n)n∈N ⊂ Ω, a function v1 ∈ D1,2(RN ) which satisfy

−(a+ bA)∆v1 = |v1|2
∗−2v1 in RN

and further, a sequence of functions (w1
n) ⊂ H1

0 (Ω), such that R1
ndist(x

1
n, ∂Ω) →

∞,
w1

n ⇀ 0 weakly in H1
0 (Ω),

w1
n = w0

n − (R1
n)

N−2
2 v1(R

1
n(· − x1

n)) + o(1) in D1,2(RN ),

∥w1
n∥2H1

0 (Ω) = ∥w0
n∥2H1

0 (Ω) − ∥v1∥2D1,2(RN ) + o(1)

and
J ′(w1

n) = o(1) in H−1(Ω),

Ĩ(w1
n) = Ĩ(w0

n)− Ĩ∞(v1) + o(1)

up to subsequences. If we can select a subsequence from (wn) which strongly
converges to 0 in H1

0 (Ω), the proof is finished. If not, we repeat the same
argument with the above one. Finally we reach a number k ∈ N such that for
every i ∈ {1, 2, · · · , k}, there exist a sequence of values (Ri

n)n∈N ⊂ RN , points
(xi

n)n∈N ⊂ Ω, a function vi ∈ D1,2(RN ) which satisfy

−(a+ bA)∆vi = |vi|2
∗−2vi in RN

and further, a sequence of functions (wi
n) ⊂ H1

0 (Ω), such that Ri
ndist(x

i
n, ∂Ω) →

∞ and

wk
n = un − u0 −

k∑
i=1

(Ri
n)

N−2
2 vi(R

i
n(· − xi

n)) + o(1) in D1,2(RN ),

∥wk
n∥2H1

0 (Ω) = ∥un∥2H1
0 (Ω) − ∥u0∥2H1

0 (Ω) −
k∑

i=1

∥vi∥2D1,2(RN ) + o(1),

Ĩ(wk
n) = I(un)− Ĩ(u0)−

k∑
i=1

Ĩ∞(vi) + o(1),

and further,
wk

n → 0 in H1
0 (Ω),

up to subsequences. If not, we can choose a number k′ ∈ N with

k′ >
A

a
N−2

2 S
N
2

(23)
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such that

∥un∥2H1
0 (Ω) = ∥wk′

n ∥2H1
0 (Ω) + ∥u0∥2H1

0 (Ω) +

k′∑
i=1

∥vi∥2D1,2(RN ) + o(1), (24)

instead of k ∈ N above. Here from (19) and the Sobolev inequality, we have for
every i ∈ {1, 2, · · · , k′},

0 ≥ a∥vi∥2D1,2(RN ) −
∫
RN

|vi|2
∗
dx

≥ a∥vi∥2D1,2(RN ) − S− 2∗
2 ∥vi∥2

∗

D1,2(RN ).

This inequality implies

∥vi∥2D1,2(RN ) ≥ a
N−2

2 S
N
2 . (25)

Using (24), (25) and (23), we conclude that

A = lim
n→∞

∥un∥2H1
0 (Ω)

≥ k′a
N−2

2 S
N
2

> A,

a contradiction. This proves our claim. The proof is done.
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