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On the Brezis-Nirenberg problem with a Kirchhoff type
perturbation

Daisuke Naimen

Department of Mathematics, Graduate School of Science, Osaka City University,
3-3-138 Sugimoto Sumiyoshi-ku, Osaka City University, 558-8585 JAPAN

Abstract

In this paper, we consider a nonlinear elliptic problem,{
−(1 + b∥u∥2)∆u = λu+ u5, u > 0 in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, λ ∈ R and
b ≥ 0. We give an extension of the result by Brezis-Nirenberg in 1983 to the
case b > 0.

Keywords: Kirchhoff, nonlocal, elliptic, critical, variational method

1. Introduction

In this paper, we investigate the existence of solutions of the problem,
−(1 + b∥u∥2)∆u = λu+ u5 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P)

here Ω is a 3 dimensional open ball and ∥ · ∥ denotes the usual H1
0 (Ω) norm.

We regard λ ∈ R as a given constant and b ≥ 0 as a parameter. (P) has the
following two features.

The characteristic principal term of the equation of (P) has its origin in the
theory of nonlinear vibrations. See the book by Kirchhoff [14] and the survey
[6]. Recently this Kirchhoff type elliptic problem is investigated extensively. We
refer to [2]-[4][9][10][15]-[17][19]-[21][24][26] and so on. Among their works, the
effects of the nonlocal coefficient, on the existence of solutions are investigated.

On the other hand, the right hand side of the equation of (P) has the critical
term u5. Thus (P) has the typical difficulty in proving the existence of solutions.
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This difficulty is caused by the lack of compactness of the Sobolev embedding
H1

0 (Ω) ↪→ L6(Ω). See the results for several critical problems, the pioneering
work [7] and [1][5][8][11][12][25], etc.

1.1. Main result

Here we note a result by Brezis-Nirenberg [7]. In [7], (P) with b = 0 is
treated. One of the results can be read, “If and only if λ1/4 < λ < λ1 there
exists a solution of (P) if b = 0”, here λ1 > 0 is the principal eigenvalue of −∆
on the open ball. In this paper, we extend the result above to the case b > 0.
Our result is the following.

Theorem 1.1. Let λ ∈ R be a given constant. Then the following assertions
hold.

(i) If λ ≤ λ1/4, (P) has no solution for all b ≥ 0.

(ii) If λ1/4 < λ < λ1, there exists a constant B2 = B2(λ) > 0 such that (P)
has a solution for all 0 ≤ b < B2.

(iii) If λ = λ1, there exists a constant B3 = B3(λ1) > 0 such that (P) has a
solution for all 0 < b < B3 and (P) has no solution for b = 0.

(iv) If λ1 < λ, there exists a constant B4 = B4(λ) > 0 such that (P) has a
solution for all b ≥ B4.

We focus on Theorem 1.1 (iii) and (iv). As we state before, in the case
λ ≥ λ1, (P) has no solution if b = 0. But our theorem says that even if λ ≥ λ1,
(P) do have a solution thanks to b > 0 in the appropriate region. Such existence
phenomena induced by the nonlocal perturbation is a new knowledge among the
other recent researches in Kirchhoff type elliptic problems.

On the other hand, we still have some questions, (i) the existence or nonex-
istence for the cases λ1/4 < λ < λ1 with large b > 0, (ii) similarly, for the case
λ > λ1 with small b > 0, and (iii) the existence of the second solution for the
case λ > λ1 with large b > 0. These are left for our future works.

Several results associated to the Kirchhoff type elliptic problems with critical
nonlinearity are obtained in [2][4][9][10][17][20][24][26]. In particular, [9], [20]
and [24] are closely related to (P). They consider (P) with nonlinear term λuq+
u5 (but note that they consider b ≥ 0 as a given constant and λ > 0 as a
parameter in contrast to us). In [9], Figueiredo considers the case 1 < q < 5.
He gets the existence if λ > 0 is sufficiently large. In a part of [20], Naimen
treats the case 3 < q < 5. He concludes the existence for all λ > 0. In [24], Sun
and Liu consider the case 0 < q < 1. They ensure the solvability for sufficiently
small λ > 0. But to our best knowledge, there is no previous work for the case
q = 1. In this paper, we consider such a case and conclude Theorem 1.1.

1.2. Organization of this paper

This paper is organized as follows. In Section 2, we prove Theorem 1.1 (i).
In Section 3, we demonstrate Theorem 1.1 (ii) and (iii). Finally in Section 4,
we conclude Theorem 1.1 (iv). In the proof, we use a same character C to
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denote several positive constants. Note also that we denote B(x, r) as an 3
dimensional open ball centered at x ∈ R3 with radius r > 0 or an open ball in
H1

0 (Ω) topology centered at x ∈ H1
0 (Ω) with radius r.

1.3. The weak solutions of (P)

Here we give the definition of the weak solutions of (P). We say u ∈ H1
0 (Ω)

is a weak solution of (P), if and only if u satisfies

(1 + b∥u∥2)
∫
Ω

∇u · ∇hdx− λ

∫
Ω

u+hdx−
∫
Ω

u5+hdx = 0, (1)

for all h ∈ H1
0 (Ω), where u+ := max{0, u}. By the analogue with the usual

elliptic regularity argument, we can conclude that every weak solution of (P) is
a classical solution of (P) even if b > 0.

1.4. A priori estimate

We can get a priori estimate for the solutions u of (P) if b > 0 as follows.
Let λ1/4 < λ and b > 0 be in the appropriate region. We have if λ < λ1,

0 < ∥u∥ <
(
4λ− λ1
bλ1

) 1
2

, (2)

and if λ ≥ λ1, (
λ− λ1
bλ1

) 1
2

< ∥u∥ <
(
4λ− λ1
bλ1

) 1
2

. (3)

In fact, put C := (1 + b∥u∥2)−1/4. Then v := Cu satisfies{
−∆v = λ

1+b∥u∥2 v + v5, v > 0 in Ω,

v = 0 on ∂Ω.

From [7], it follows that
λ1
4
<

λ

1 + b∥u∥2
< λ.

This proves (2) and (3).

2. The case λ ≤ λ1/4

In this section, we prove Theorem 1.1 (i). The argument is strictly based on
that in [7]. Firstly we consider the case λ ≤ 0. In this case, we use the following
Pohozaev type identity [22] (see also [23]) for the solutions of (P).
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Lemma 2.1. Let u be a solution of (P) and put g(t) := λt + t5. Then the
following identity holds.

(1 + b∥u∥2)
2

∫
Ω

|∇u|2dx− 3

∫
Ω

G(u)dx+
(1 + b∥u∥2)

2

∫
∂Ω

(x · ν)
∣∣∣∣∂u∂ν

∣∣∣∣2 dσ = 0

(4)

where G(t) :=
∫ u

0
g(s)ds, ν and ∂/∂ν denote the outer normal vector and the

outer normal derivative on ∂Ω respectively, and further dσ is the 2-dimensional
surface measure on ∂Ω.

Proof. Let u be a solution of (P). Then applying the well known procedure, the
proof is straightforward.

We give the following theorem.

Theorem 2.2. Let Ω be strictly star-shaped and λ ≤ 0. Then (P) has no
solution for all b ≥ 0.

Proof. Utilizing (4), we can clearly conclude the theorem by the usual argument.

Next we consider the case 0 < λ ≤ λ1/4.

Theorem 2.3. If Ω is an open ball and 0 < λ ≤ λ1/4, there exists no solution
of (P) for all b ≥ 0.

Proof. For simplicity we assume Ω = B(0, 1). Then by careful reading of the
argument in [13], we can confirm that every solution of (P) is radially symmetric
even if b > 0. Consequently every solution of (P) satisfies

−A
(
u′′ + 2

ru
′) = λu+ u5 in [0, 1),

u > 0 in [0, 1),

u′(0) = u(1) = 0,

(Kr)

where we put A = A(∥u∥2) = 1 + b∥u∥2 for simplicity. Now let 0 < λ ≤ λ1/4
and u be a solution of (Kr). We take a smooth function ψ in [0, 1] such that
ψ(0) = 0. By a similar procedure to that in [7], we have a variant of Pohozaev
type identity,∫ 1

0

u2
(
A

4
ψ′′′ + λψ′

)
r2dr =

2

3

∫ 1

0

u6
(
rψ − r2ψ′) dr + A

2
|u′(1)|2ψ(1). (5)

We take
ψ(r) = sin

(
(4λ/A)

1/2
r
)
,

so that ψ(0) = 0 and ψ(1) ≥ 0. Then noting A ≥ 1 we get a contradiction by
(5).

The proof of Theorem 1.1 (i). Assume Ω is an open ball. Then the proof is
obvious by Theorem 2.2 and Theorem 2.3.
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3. The case λ1/4 < λ ≤ λ1

In this section, we prove Theorem 1.1 (ii) and (iii). We suppose Ω = B(0, 1)
for simplicity and fix λ1/4 < λ ≤ λ1. If b = 0, the conclusion is in [7]. Hence
here, we give the proof for the case b > 0. But if b > 0, the minimizing argument
in [7] does not seem to work because of the existence of the nonlocal coefficient.
Thus we apply the mountain pass theorem here. We define the energy functional
associated to (P) so that

Ib(u) =
1

2
∥u∥2 + b

4
∥u∥4 − λ

2

∫
Ω

u2+dx− 1

6

∫
Ω

u6+dx.

Clearly Ib is well-defined and continuously Fréchet differentiable on H1
0 (Ω). We

shall ensure the existence of a nontrivial critical point of Ib. The main argument
lies in ensuring the local PS condition for Ib. To this aim, we give the following
lemma.

Lemma 3.1. Let {uj} ⊂ H1
0 (Ω) be a (PS)c sequence with

c <
1

2
CK +

b

4
C2

K − 1

6S3
C3

K

where CK :=
(
bS3 +

√
(bS3)2 + 4S3

)
/2. Then there exists a function u ∈

H1
0 (Ω) such that (uj)+ → u+ in L6(Ω) up to subsequences.

Proof. We first claim that {uj} is bounded in H1
0 (Ω). In fact, since Ib(uj) → c

and I ′b(uj) → 0 in H−1(Ω), the Poincare inequality and our assumption λ ≤ λ1
confirm

c+ 1 ≥ Ib(uj)−
1

6
⟨I ′b(uj), uj⟩+

1

6
⟨I ′b(uj), uj⟩

≥ 1

3

(
1− λ

λ1

)
∥uj∥2 +

b

12
∥uj∥4 − ∥uj∥

≥ b

12
∥uj∥4 − ∥uj∥,

for large j ∈ N. As b > 0, this proves the claim. Hence by the weak compactness
of H1

0 (Ω) and the compactness of the Sobolev embedding, we have

uj ⇀ u weakly in H1
0 (Ω),

uj → u in L2(Ω),

uj → u a.e. on Ω,

up to subsequence but still denoted {uj}. Furthermore by the second concen-
tration compactness lemma [18], we can assume that there exist an at most
countable set J , points {xk}k∈J ⊂ Ω, and values {µk}k∈J , {νk}k∈J ⊂ R+ with

Sν
1
3

k ≤ µk (k ∈ J) (6)
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such that,

|∇uj |2 ⇀ dµ ≥ |∇u|2 +
∑
k∈J

µkδxk
,

(uj)
6
+ ⇀ dν = u6+ +

∑
k∈J

νkδxk
,

in the measure sense, here δx denotes the Dirac delta measure concentrated at
x ∈ R3 with mass 1. Now we claim J = ∅. To show this, we assume J ̸= ∅
to the contrary. Then fix k ∈ J . Define a smooth test function ϕ in R3 such
that ϕ = 1 on B(xk, ε), ϕ = 0 on B(xk, 2ε)

c and 0 ≤ ϕ ≤ 1 otherwise. We also
assume |∇ϕ| ≤ 2/ε. Again since I ′b(uj) → 0 in H−1(Ω) and {uj} is bounded,
we have after some calculations,

0 = lim
j→∞

⟨I ′b(uj), ujϕ⟩

=

(
1 + b

∫
Ω

dµ

)∫
Ω

ϕdµ−
∫
Ω

ϕdν + o(1)

where o(1) → 0 as ε→ 0. Taking ε→ 0, we conclude

0 ≥ (1 + bµk)µk − νk.

Finally using (6) we reach to an estimate,

µk ≥ 1

2

(
bS3 +

√
(bS3)2 + 4S3

)
= CK . (7)

Then since Ib(uj) → c and I ′b(uj) → 0 in H−1(Ω), we have

c = lim
j→∞

{
Ib(uj)−

1

4
⟨I ′b(uj), uj⟩

}
≥ lim

j→∞

{(
1

2
− 1

4

)
∥uj∥2 − λ

(
1

2
− 1

4

)∫
Ω

(uj)
2
+dx+

(
1

4
− 1

6

)∫
Ω

(uj)
6
+dx

}
≥
(
1

2
− 1

4

)
µk + b

(
1

4
− 1

4

)
µ2
k +

(
1

4
− 1

6

)
νk

≥ 1

2
CK +

b

4
C2

K − 1

6S3
C3

K

where for the last inequality we use (6), (7), and the fact that CK + bC2
K −

C3
K/S

3 = 0. This contradicts our hypothesis on c. It follows that∫
Ω

(uj)
6
+dx→

∫
Ω

u6+dx as j → ∞.

This leads us to the proof.

6



Remark 3.2. We can easily confirm that u is nonnegative. In fact, since {uj}
is bounded, we can assume that ∥uj∥2 → B for some value B ≥ 0. If B = 0, we
finish the proof. If not, noting that we can further suppose uj ⇀ u weakly in
H1

0 (Ω) and (uj)+ → u+ in Lp(Ω) for all 1 ≤ p < 6, we have

(1 + bB)

∫
Ω

∇u · ∇hdx = λ

∫
Ω

u+hdx+

∫
Ω

u5+hdx,

for all h ∈ H1
0 (Ω). Taking h = −min{u, 0} =: u−, we ensure the claim.

Here as in [7], for all ε > 0 we introduce the cut off Tarenti function function,

uε(x) :=
ε2τ(|x|)

(ε2 + |x|2) 1
2

where τ ∈ C∞
0 ([0, 1]) is a cut off function with τ(0) = 1 and τ ′(0) = τ(1) = 0.

Then we estimate
∫
Ω
|∇uε|2dx = K1 + ωε

∫ 1

0
|τ ′(r)|2dr +O(ε2),∫

Ω
u6εdx = K3

2 +O(ε2),∫
Ω
u2εdx = ωε

∫ 1

0
|τ(r)|2dr +O(ε2),

(8)

where ω is the area of a 2 dimensional unit disc and K1,K2 > 0 are some
constants with K1/K2 = S. Here S > 0 is the usual Sobolev constant defined
by

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
u6dx)

1
3

.

The next lemma shows that a mountain pass level of Ib is below the desired
value.

Lemma 3.3. For every λ1/4 < λ ≤ λ1, there exists a constant B = B(λ) > 0
such that for all 0 < b < B, we can choose a constant ε1 = ε1(λ, b) > 0 so that

sup
t≥0

Ib(tuε) <
1

2
CK +

b

4
C2

K − 1

6S3
C3

K

for all 0 < ε < ε1.

Proof. Let uε be as defined before with τ(r) := cos(πr/2). Take t > 0. Then
we have after some calculation that

Ib(tuε) =
t2

2

(
∥uε∥2 − λ

∫
Ω

u2εdx

)
+
bt4

4
∥uε∥4 −

t6

6

∫
Ω

u6εdx

≤ 1

2
CK +

b

4
C2

K − 1

6S3
C3

K − C

{(
λ− λ1

4

)
S

1
2 +O(b)

}
ε+O(ε2),

for some constant C > 0. Notice that since λ > λ1/4, there exists a constant
B = B(λ) > 0 such that (

λ− λ1
4

)
S

1
2 +O(b) > 0

7



for all 0 < b < B. Fix such a b. Then we can take a constant ε1 = ε1(λ, b) > 0
so that

Ib(tuε) <
1

2
CK +

b

4
C2

K − 1

6S3
C3

K

for all t > 0 and all ε ∈ (0, ε1). This completes the proof.

Proof of Theorem 1.1 (ii) and (iii). Fix λ1/4 < λ ≤ λ1. The conclusion for the
case b = 0 is in [7]. Let us consider the case b > 0. Take B = B(λ) > 0 from
lemma 3.3. For all 0 < b < B, we shall ensure the followings.

(1) There exist constants α, ρ > 0 such that Ib(u) ≥ α for all u ∈ H1
0 (Ω) with

∥u∥ = ρ.

(2) There exists a function v0 ∈ H1
0 (Ω) such that ∥v0∥ > ρ and Ib(v0) ≤ 0.

We confirm (1). Let ρ > 0 and u ∈ H1
0 (Ω) with ∥u∥ = ρ. Then the Poincare

inequality and the Sobolev embedding imply

Ib(u) ≥
1

2

(
1− λ

λ1

)
∥u∥2 + b

4
∥u∥4 − C∥u∥6

≥ b

4
ρ4 − Cρ6

for some constant C > 0, where for the last inequality we use the assumption
λ ≤ λ1. Noting b > 0, we obtain the conclusion. We can also prove (2) as usual.
Now we define

Γb := {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = 0 , γ(1) = v0}

and
cb := inf

γ∈Γ
max
t∈[0,1]

Ib(γ(t)).

Noting Lemma 3.3 and choosing v0 appropriately, we get

cb <
1

2
CK +

b

4
C2

K − 1

6S3
C3

K .

Finally let us conclude the (PS)cb condition for Ib. Let {uj} ⊂ H1
0 (Ω) be a

(PS)cb sequence. Then by Lemma 3.1 and Remark 3.2, we can assume that
there exists a nonnegative function u ∈ H1

0 (Ω) such that

uj ⇀ u weakly in H1
0 (Ω),

uj → u in L2(Ω),

(uj)+ → u in L6(Ω).

Furthermore since I ′b(uj) → 0 in H−1(Ω), we have

⟨I ′b(uj), uj − u⟩ = o(1)

8



where o(1) → 0 as j → ∞. Then the L2(Ω) convergence of {uj} and the L6(Ω)
convergence of {(uj)+} show

(1 + b∥uj∥2)
∫
Ω

∇uj · ∇(uj − u)dx = o(1) as j → ∞.

Finally by the weak convergence, we obtain uj → u in H1
0 (Ω). The mountain

pass theorem concludes the proof.

4. The case λ > λ1

In this section we prove Theorem 1.1 (iv). We remark that for the conclu-
sion, it is enough if we assume Ω is a bounded domain with sufficiently smooth
boundary. Fix λ > λ1. As in the previous section, we define the energy func-
tional,

Ib(u) =
1

2
∥u∥2 + b

4
∥u∥4 − λ

2

∫
Ω

u2+dx− 1

6

∫
Ω

u6+dx.

We shall prove the existence of a nontrivial critical point, in particular a minimal
point, of Ib. To this aim, inspired by [24], we apply the method of the Nehari
manifold. We also refer to the original work [25]. To the beginning, we define

Λ := {u ∈ H1
0 (Ω) | ⟨I ′b(u), u⟩ = 0},

and split Λ into 3 parts,

Λ+ := {u ∈ Λ | b∥u∥4 > 2

∫
Ω

u6+dx}, (9)

Λ0 := {u ∈ Λ | b∥u∥4 = 2

∫
Ω

u6+dx}, (10)

Λ− := {u ∈ Λ | b∥u∥4 < 2

∫
Ω

u6+dx}. (11)

Now we choose

b > max

{
4

(
λ

λ1
− 1

) 1
2

S− 3
2 , 4

(
λ

λ1
− 1

)
S−3

}
, (12)

where S is the Sobolev constant as defined in previous section. Since we fix
b > 0 as above, we denote Ib as I for simplicity. Let us begin with the following
lemmas.

Lemma 4.1. Λ+,Λ− ̸= ∅ and Λ0 = {0}.

Proof. We consider the principal eigenfunction ϕ1 > 0 of −∆ on Ω with ∥ϕ1∥ =
1. Then for t > 0, we put a function

f(t) := −
(
λ

λ1
− 1

)
t2 + bt4 −

(∫
Ω

ϕ61dx

)
t6

9



Noting the fact
∫
Ω
ϕ61dx ≤ S−3 and (12), there exist constants 0 < t− < t+

such that f(t±) = 0 and f ′(t±) ≶ 0. This implies t±ϕ1 ∈ Λ∓. In addition, we
assume that there exists a nontrivial function u ∈ Λ0 to the contrary. Firstly
suppose ∥u∥2 ≥ λ

∫
Ω
u2+dx. Then we obtain by (10),

0 = ∥u∥2 + b∥u∥4 − λ

∫
Ω

u2+dx−
∫
Ω

u6+dx

≥ b

2
∥u∥4.

This is impossible. Next we assume ∥u∥2 < λ
∫
Ω
u2+dx. Then (12) and the

Sobolev and the Poincare inequalities implies

0 <

 b2

4
(

λ
λ1

− 1
)
S−3

− 1

∫
Ω

u6+dx

≤ b2∥u∥8

4
(

λ
λ1

− 1
)
∥u∥2

−
∫
Ω

u6+dx

≤ b2∥u∥8

4
(
λ
∫
Ω
u2+dx− ∥u∥2

) − b

2
∥u∥4

= 0,

where for the last equality, we use (10). This is impossible. This concludes the
proof.

Lemma 4.2. For any u ∈ Λ+, there holds

∥u∥ <

(
S

3
2

2

) 1
2

.

Proof. For all u ∈ Λ+, we have by the Poincare inequality and (9),

0 = ∥u∥2 + b∥u∥4 − λ

∫
Ω

u2+dx−
∫
Ω

u6+dx

>
b

2
∥u∥2

{
∥u∥2 − 2

b

(
λ

λ1
− 1

)}
.

Noting our assumption λ > λ1 and (12), we get the conclusion.

Lemma 4.3. For all u ∈ Λ+, there exists a constant ε > 0 and a C1 functional
t on B(0, ε) ⊂ H1

0 (Ω) such that t(0) = 1, t(w) > 0, t(w)(u − w) ∈ Λ for all
w ∈ B(0, ε), and further,

⟨t′(0), h⟩ =
(1 + 2b∥u∥2)

∫
Ω
∇u · ∇hdx− λ

∫
Ω
u+hdx− 3

∫
Ω
u5+hdx

b∥u∥4 − 2
∫
Ω
u6+dx

, (13)

for all h ∈ H1
0 (Ω).

10



Proof. For all u ∈ Λ+, we define a C1 map,

g(w, t) := ∥u− w∥2 + bt2∥u− w∥4 − λ

∫
Ω

(u− w)2+dx− t4
∫
Ω

(u− w)6+dx.

Then by (9), we can easily verify that

g(0, 1) = 0 and gt(0, 1) ̸= 0.

The implicit function theorem concludes the proof.

Lemma 4.4. −∞ < infu∈Λ+∪Λ0 < 0

Proof. For all u ∈ Λ+ ∪ Λ0, using the Poincare inequality we get

I(u) = I(u)− 1

6
⟨I ′(u), u⟩

≥ −1

3

(
λ

λ1
− 1

)
∥u∥2 + b

12
∥u∥4.

(14)

On the other hand, we fix a function u ∈ Λ+. Then we have from (9),

I(u) < − b

12
∥u∥4. (15)

(14) and (15) ensure the proof.

Now we put c0 := infu∈Λ+∪Λ0 I(u). From the Ekeland variational principle,
there exists a sequence {un} ⊂ Λ+ ∪ Λ0 such that

I(un) ≤
1

n
+ c0 and I(w) > I(un)−

1

n
∥w − un∥ (w ∈ Λ+ ∪ Λ0). (16)

Lemma 4.5. Let {un} be given as above. Then

I ′(un) → 0 in H−1(Ω), (17)

up to subsequences.

Proof. We first claim that {un} is bounded in H1
0 (Ω). Actually noting (16), we

have similarly to (14),

c0 + 1 ≥ I(un)−
1

6
⟨I ′(un), un⟩

≥ −1

3

(
λ

λ1
− 1

)
∥un∥2 +

b

12
∥un∥4.

for large n ∈ N. Since b > 0, this inequality implies the claim. Then by the
weak compactness of H1

0 (Ω) and the compactness of the Sobolev embeddings,
there exists a function u ∈ H1

0 (Ω) such that

un ⇀ u weakly in H1
0 (Ω),

un → u in L2(Ω),

un → u a.e. on Ω,

11



up to subsequences but still denoted {un}. Next we propose that u ̸= 0. If not,
since {un} ⊂ Λ+ ∪ Λ0, by the L2(Ω) convergence, we have

o(1) = ∥un∥2 + b∥un∥4 −
∫
Ω

(un)
6
+dx

≥ ∥un∥2 +
b

2
∥un∥4.

It follows that un → 0 in H1
0 (Ω). This is a contradiction. Consequently we

can assume {un} ⊂ Λ+. Now let us conclude (17). To this end, we follow the
argument in the proof of Theorem 1 in [25]. We assume ∥I ′(un)∥ > 0 for large
n ∈ N. For such a n ∈ N and un ∈ Λ+, we take a constant ε > 0 and a C1

functional t on B(0, ε) ⊂ H1
0 (Ω) from Lemma 4.3. For all 0 < δ < ε, we define

tn(δ) := t(δI ′(un)/∥I ′(un)∥) and

wδ := tn(δ)

(
un − δ

I ′(un)

∥I ′(un)∥

)
.

Note that wδ ∈ Λ+ for sufficiently small δ > 0. Recalling (16), we have

1

n
∥wδ − I(un)∥ > I(wδ)− I(un)

= (1− tn(δ))⟨I ′(wδ), un⟩+ δtn(δ)⟨I ′(wδ),
I ′(un)

∥I ′(un)∥
⟩+ o(δ).

Dividing by δ > 0 and taking δ → 0, we get

C(|t′n(0)|+ 1)

n
≥ −⟨t′(0), I ′(un)

∥I ′(un)∥
⟩⟨I ′(un), un⟩+ ⟨I ′(un),

I ′(un)

∥I ′(un)∥
⟩

= ∥I ′(un)∥,

for some constant C > 0, where |t′n(0)| := |⟨t′n(0), I ′(un)/∥I ′(un)∥⟩|. Thus the
proof is done once we confirm that |t′n(0)| is bounded. Let us show this. From
(13), there exists a constant C > 0 which is independent of n ∈ N such that

|t′n(0)| ≤
C

b∥un∥4 − 2
∫
Ω
(un)6+dx

.

We claim that we can extract a subsequence so that

b∥un∥4 − 2

∫
Ω

(un)
6
+dx > C

for some constant C > 0. To confirm this, it is enough to show that

lim
n→∞

(
b∥un∥4 − 2

∫
Ω

(un)
6
+dx

)
> C (18)

for a value C > 0. Since {un} ⊂ Λ+, obviously

lim
n→∞

(
b∥un∥4 − 2

∫
Ω

(un)
6
+dx

)
≥ 0.

12



Now we suppose

lim
n→∞

(
b∥un∥4 − 2

∫
Ω

(un)
6
+dx

)
= 0 (19)

to the contrary. Then since {un} is bounded, we can assume that there exists
a constant B > 0 such that

∥un∥2 → B (20)

and thus by (19), ∫
Ω

(un)
6
+dx→ b

2
B2. (21)

In addition as {un} ⊂ Λ+, (20) and (21) shows

λ

∫
Ω

u2+dx = B +
b

2
B2. (22)

Again using (12) and applying the Sobolev and the Poincare inequalities, we
have

0 <

 b2

16
(

λ
λ1

− 1
)
S−3

− 1

∫
Ω

(un)
6
+dx

=
b2∥un∥8

16
(

λ
λ1

− 1
)
∥un∥2

−
∫
Ω

(un)
6
+dx

≤ b2∥un∥8

16
(
λ
∫
Ω
u2+dx− ∥un∥2

) − ∫
Ω

(un)
6
+dx.

Taking n→ ∞ and noting (20), (21) and (22), we conclude

0 ≤ −3bB2

8
.

This is impossible. Thus (18) holds. This completes the proof.

Finally we ensure the existence of a nontrivial critical point of I.

Lemma 4.6. Let {un} be a minimizing sequence of c0 as in the paragraph above
Lemma 4.5. Then there exists a nontrivial critical point u ∈ Λ+ of I.

Proof. Our argument is based on that in [24]. As in the proof of Lemma 4.5,
we have that {un} is bounded in H1

0 (Ω). Then by the second concentration
compactness lemma, there exist a nonnegative function u ∈ H1

0 (Ω), an at most
countable set J , points {xk}k∈J ⊂ Ω, and values {µk}k∈J , {νk}k∈J ⊂ R+ with

Sν
1/3
k ≤ µk for all k ∈ J such that up to subsequences,

|∇un|2 ⇀ dµ ≥ |∇u|+
∑
k∈J

µkδxk

(un)
6
+ ⇀ dν = u6 +

∑
k∈J

νkδxk

13



in the measure sense. Similarly to the proof of Lemma 3.1, we shall show J = ∅.
To do this, we assume J ̸= ∅. Choose k ∈ J . Define a smooth cut off function
ϕ such that ϕ = 1 on B(xk, ε), ϕ = 0 on B(xk, 2ε)

c and 0 ≤ ϕ ≤ 1 otherwise.
Moreover we suppose |∇ϕ| ≤ 2/ε. Since I ′(un) → 0 in H−1(Ω) by Lemma 4.5,
we estimate similarly to (7),

µk ≥ S
3
2 .

This inequality implies
∥un∥2 ≥ S

3
2 + o(1),

where o(1) → 0 as n→ ∞. But since {un} ⊂ Λ+, there holds

∥un∥2 ≤ S
3
2

2
,

by Lemma 4.2. This is a contradiction. It follows that

(un)+ → u in L6(Ω).

Then analogously with the proof of Theorem 1.1, we have

un → u in H1
0 (Ω).

As a consequence, u is a critical point of I and clearly u ∈ Λ+∪Λ0. Furthermore
since u ̸= 0, Lemma 4.1 concludes that u ∈ Λ+. This finishes the proof.

The proof of Theorem 1.1 (iv). Let λ > λ1. We put

B4 := max

{
4

(
λ

λ1
− 1

) 1
2

S− 3
2 , 4

(
λ

λ1
− 1

)
S−3

}
.

Then from Lemma 4.6, (P) has a nontrivial weak solution for all b > B4. This
completes the proof.
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