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Positive solutions of Kirchhoff type elliptic
equations involving a critical Sobolev expo-
nent

Daisuke Naimen

Abstract. In this paper we investigate the following Kirchhoff type el-
liptic boundary value problem involving a critical nonlinearity:{

−(a+ b
∫
Ω
|∇u|2dx)∆u = µg(x, u) + u5, u > 0 in Ω,

u = 0 on ∂Ω,
(K1)

here Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, a, b ≥ 0
and a+ b > 0. Under several conditions on g ∈ C(Ω×R,R) and µ ∈ R,
we prove the existence and nonexistence of solutions of (K1). This is
some extension of a part of Brezis-Nirenberg’s result in 1983.

Mathematics Subject Classification (2010). Primary 35J60; Secondary
35J20, 35J25.

Keywords. Kirchhoff, elliptic, critical, variational method.

1. Introduction

We consider the following Kirchhoff type elliptic equation with a Dirichlet
boundary conditon:

−(a+ b
∫
Ω
|∇u|2dx)∆u = µg(x, u) + u5 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(K1)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω. We assume
that a, b ≥ 0 and a + b > 0. In addition we emphasize that u5 in the right
hand side of the equation is a critical term, since 6 is a critical exponent in
the sense of the Sobolev embedding H1

0 (Ω) ↪→ Lp(Ω). In this paper we prove
the existence of solutions of (K1).

(K1) has its origin in the theory of nonlinear vibration. For instance, we
give the following equation which describes the free vibration of a stretched
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string (cf. [26]):

ρ
∂2u

∂t2
=

(
T0 +

Ea

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx) ∂2u

∂x2
, (K0)

where ρ > 0 is the mass per unit length, T0 is the base tension, E is the Young
modulus, a is the area of cross section and L is the initial length of the string.
(K0) takes account the change of the tension on the string which is caused by
the change of its length during the vibration. The nonlocal equation of this
type was first proposed by Kirchhoff in 1876 ([18]). After that, several physi-
cists also consider such equations for their researches in the theory of non-
linear vibrations theoretically or experimentally([9][10][25][26][30]). Moreover
mathematically, the solvability of several Kirchhoff type quasilinear hyper-
bolic equations have been extensively discussed. See earlier results [6][29] and
the work by J. L. Lions ([22]), and recent ones [5][12]. For more details in the
physical and mathematical background of Kirchhoff type equations, see the
survey [4]. Recently, the Kirchhoff type elliptic equations such like (K1) get
so many attentions. Many authors prove the existence of solutions of their
problems using variational or topological methods. The main goal of their
works is to study the effect of the non-local coefficients:

(
a+ b

∫
Ω
|∇u|2dx

)
(or in general denoted by m(

∫
Ω
|∇u|2dx)) on the principal term of their equa-

tions, on the existence results. See earlier results [1][24] and [2] [3] [13] [14]
[19] - [21] [27] [32] [33] and so on.

On the other hand, as is well-known, when a nonlinear elliptic boundary
value problem has a critical term such as (K1), a crucial difficulty occurs in
proving the existence of solutions of the problem. Such difficulty is caused by
the lack of compactness of the Sobolev embedding H1

0 (Ω) ↪→ L6(Ω). Because
of this difficulty, over these three decades, (K1) with a = 1 and b = 0 has
been extensively studied by many authors. One of the most important results
is obtained by Brezis and Nirenberg ([8]). Our main aim in this paper is to
extend their results in Section 2.5 in [8] to the case a, b ≥ 0 and a + b > 0.
Compare the results below with those in Section 2.5 in [8].

To show our main results, we introduce some conditions on the function
g : Ω× R → R:
(g1) g is continuous in Ω × R, g(x, u) ≥ 0 if u ≥ 0 and g(x, u) = 0 if u ≤ 0

for all x ∈ Ω.
(g2) g(x, u) = o(u) as u → 0+ and g(x, u) = o(u5) as u → ∞ uniformly for

x ∈ Ω.
(g3) There exists a constant θ > 0 such that 4 < θ < 6 and g(x, u)u −

θG(x, u) ≥ 0 for all x ∈ Ω and u ≥ 0, where G(x, u) :=
∫ u

0
g(x, t)dt.

(g4) There exists an nonempty open set ω ⊂ Ω such that

lim
u→∞

g(x, u)

u3
= ∞.

uniformly for x ∈ ω.

The following theorem gives our main argument in this paper.
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Theorem 1.1. Let a, b ≥ 0 and a+ b > 0. Then if g satisfies (g1)-(g4), (K1)
has a solution for all µ > 0.

In view of the typical power nonlineraities, Theorem 1.1 allows us to
ensure the next corollary.

Corollary 1.2. Let a, b ≥ 0 and a+b > 0. Then if 3 < q < 5 and g(x, u) = uq,
(K1) has a solution for all µ > 0.

Here we introduce the following assumptions (g5) and (g6) on g which
are weaker than (g3) and (g4) respectively.

(g5) There exists a constant θ > 0 such that 2 < θ < 6 and g(x, u)u −
θG(x, u) ≥ 0 for all x ∈ Ω and u ≥ 0.

(g6) There exist an nonempty open set w ⊂ Ω and an interval I ⊂ (0,∞)
such that g(x, u) > 0 if x ∈ w and u ∈ I.

Now we can give the following theorem and corollary. An almost same result
for (K1) with a more general nonlocal coefficient has already obtained in [13].

Theorem 1.3. Let a > 0 and b ≥ 0. Then if g satisfies (g1), (g2), (g5) and
(g6), there exists a constant µ∗ ≥ 0 such that (K1) has a positive solution for
all µ > µ∗.

Corollary 1.4. Let a > 0 and b ≥ 0. Then if 1 < q ≤ 3 and g(x, u) = uq,
there exists a constant µ∗ ≥ 0 such that (K1) has a positive solution for all
µ > µ∗.

As additional results for Corollary 1.2 and Corollary 1.4, we can get the
following nonexistence results. The first one is Pohozaev type result([28]).

Theorem 1.5. Let a, b ≥ 0, a + b > 0 and further, assume that µ ≤ 0 and
Ω is strictly star-shaped. Then if 1 < q < 6 and g(x, u) = uq, (K1) has no
solution.

The next one concludes that the value µ∗ in Corollary 1.4 must be
strictly positive if Ω is strictly star-shaped.

Theorem 1.6. In addition to the assumption of Corollary 1.4, we assume
Ω ⊂ R3 is strictly star-shaped. Then there exists a constant µ0 > 0, which is
determined by a, q and Ω, such that (K1) has no solution for all µ ≤ µ0.

We can obtain these nonexistence results by slightly extension of the
argument in [7] or [8]. For reader’s convenience, we show the proof in Appen-
dix A.

Recently some results related to (K1) are obtained in [2], [13], [14], and
[32]. For (K1) with Ω = RN , see [3], [21] and [33]. In [14] and [32], they
consider the case 0 < q < 1 and g(x, u) = |u|q−1u. In [14], they show the
existence of infinitely many (possibly sign-changing) solutions of (K1) for suf-
ficiently small µ > 0. They use both the minimax theorem which is based on
the Clark Thoerem ([11]) and the second concentration compactness lemma
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by P. L. Lions ([23]). In [32], they prove the existence of a positive minimal
solution of (K1) for sufficiently small µ > 0 by applying the method of the
Nehari manifold and also using the second concentration compactness lemma.
The results in [2] and [13] are closely related to Theorem 1.3. In particular,
in [13], they consider the general dimensional case, i.e., N ≥ 3 and Ω ⊂ RN .
Using an appropriate truncation method, they obtain an almost same result
with Theorem 1.3 for more general nonlocal problem. In view of these results,
Theorem 1.1 is a new result for Kirchhoff type elliptic problems involving a
critical Sobolev exponent. Although Theorem 1.3 has already almost proved
in [13], inspired by [19], we introduce another truncation method and show
the proof of Theorem 1.3 and Corollary 1.4 in section 3. We also note that
although our method can be applied to the general dimensional case as in
[19], in view of our main purpose of this paper, we only treat 3 dimensional
case.

This paper is organized as follows. In section 2, we prove Theorem
1.1 and Corollary 1.2. In section 3, we prove Theorem 1.3 and Corollary
1.4. In section 4, we consider (K1) with a = 0, b = 1, 1 < q ≤ 3 and
g(x, u) = uq as additional results. In Appendix A, we show the nonexis-
tence result i.e., Theorem 1.5 and Theorem 1.6. In this paper we denote
H1

0 (Ω) as a function space which is defined by the closure of C∞
0 (Ω) with

the norm
{∫

Ω
(|∇u|2 + u2)dx

}1/2
. Thanks to the Poincare inequality, we de-

fine the usual H1
0 (Ω) norm as ∥u∥H1

0 (Ω) := (
∫
Ω
|∇u|2dx) 1

2 . For simplicity we

write ∥u∥ = ∥u∥H1
0 (Ω). Furthermore, we denote H−1(Ω) as the dual space of

H1
0 (Ω). We define the norm in H−1(Ω) as ∥f∥H−1(Ω) := sup∥u∥≤1 |⟨f, u⟩|.

Before beginning the proof, we define the weak solutions of (K1). We
call u ∈ H1

0 (Ω) a weak solution of (K1) if and only if u satisfies

(a+ b∥u∥2)
∫
Ω

∇u · ∇hdx− µ

∫
Ω

g(x, u)hdx−
∫
Ω

u5+h = 0

for all h ∈ H1
0 (Ω). If u ∈ H1

0 (Ω) is a nontrivial weak solution for (K1), then
we can trivially modify the usual elliptic regularity theorems (see for exam-
ple, Lemma B.3 in [31] and the regularity theorems in [15]) and ensure the
smoothness of u up to C2(Ω) even if b > 0. Furthermore if u is nonnegative,
by the strong maximum principle, we have u > 0 in Ω. Consequently we can
conclude that u is a classical solution of (K1).

In the following sections we denote C > 0 as some constants. If there
occurs no confusion, we use same character C even if the values of constants
are different. Furthermore we denote B(x, r) ⊂ R3 as an open ball which is
concentrated at x with radius r.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 and Corollary 1.2. Our argument is
based on that in [8]. Let a, b ≥ 0, a+ b > 0 and fix µ > 0. Assume g satisfies
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(g1)-(g4). We define the energy functional associated to (K1) so that

I(u) :=
a

2
∥u∥2 + b

4
∥u∥4 − µ

∫
Ω

G(x, u)dx− 1

6

∫
Ω

u6+dx (u ∈ H1
0 (Ω)),

where G(x, u) :=
∫ u

0
g(x, t)dt and u+ := max{u, 0}. Thanks to (g1) and (g2),

I is well-defined and continuously Fréchet differentiable on H1
0 (Ω). Further-

more every critical point of I is a weak solution of (K1). Hence we shall find
a nontrivial critical point of I. In the following argument, we often use the
next fact which says, for all δ > 0 there exists a constant Cδ > 0 such that

g(x, u) ≤ δu5 + Cδu
2 ((x, u) ∈ Ω× R) . (2.1)

This is a consequence of our hypotheses (g1) and (g2). We begin with the
next lemma.

Lemma 2.1. Let g satisfies (g1) and (g2). Then there exist constants α, ρ > 0
such that

I(u) ≥ α

for all u ∈ H1
0 (Ω) with ∥u∥ = ρ.

Proof. By (g1) and (g2), there exists a constant C > 0 such that

g(x, t) ≤ aλ1
4µ

t2 + Ct5 (2.2)

for all x ∈ Ω and t ∈ R, where λ1 > 0 is the first eigenvalue of the problem:{
−∆ϕ = λϕ in Ω,

ϕ = 0 on ∂Ω.

Here we recall the well-known inequality:∫
Ω

u2dx ≤ 1

λ1
∥u∥2 (u ∈ H1

0 (Ω)). (2.3)

Take u ∈ H1
0 (Ω) with ∥u∥ = ρ. Using (2.2), (2.3) and the Sobolev embedding

we get

I(u) ≥ a

2
∥u∥2 + b

4
∥u∥4 − aλ1

4

∫
Ω

u2dx− C

∫
Ω

u6dx− 1

6

∫
Ω

u6+dx

≥ a

4
∥u∥2 + b

4
∥u∥4 − C∥u∥6

=
a

4
ρ2 +

b

4
ρ4 − Cρ6

for some constant C > 0. Since a, b ≥ 0 and a+b > 0, taking ρ > 0 sufficiently
small, we conclude that there exists a constant α > 0 such that

I(u) ≥ α

for all u ∈ H1
0 (Ω) with ∥u∥ = ρ. This completes the proof. �

Here we recall (g4):
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(g4) There exists an nonempty open set ω ⊂ Ω such that

lim
u→∞

g(x, u)

u3
= ∞.

uniformly for x ∈ ω.

With no loss of generality, we can assume 0 ∈ ω. For every ε > 0, we define
a cut off Talenti function in Ω so that

uε(x) =
ε

1
2 τ(x)

(ε2 + |x|2) 1
2

where τ is a smooth function in Ω such that τ = 1 on some neighborhood of
0 and sptτ ⊂ ω. From the estimate in [8], we get

∫
Ω
|∇uε|2dx = K1 +O(ε),∫

Ω
u6εdx = K3

2 +O(ε2),∫
Ω
u2εdx = O(ε),

(2.4)

where K1,K2 > 0 are some constants with S = K1/K2. Here S > 0 is given
by

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
u6dx)

1
3

.

Set

vε(x) :=
uε(x)

(
∫
Ω
u6εdx)

1
6

.

Then by (2.4), we have
∫
Ω
|∇vε|2dx = S +O(ε),∫

Ω
v6εdx = 1,∫

Ω
v2εdx = O(ε).

(2.5)

We prove the following lemma.

Lemma 2.2. Suppose g satisfies (g1). Then there exists a function v0 ∈ H1
0 (Ω)

such that ∥v0∥ > ρ and I(v0) ≤ 0.

Proof. We consider tvε for all t > 0. Note that by (g1), G(x, u) ≥ 0 for all
x ∈ Ω and u ≥ 0. Using this fact and (2.5), we have that there exists ε0 > 0
such that

I(tvε) ≤
at2

2
∥vε∥2 +

bt4

4
∥vε∥4 −

t6

6

≤ at2

2
(S +O(ε)) +

bt4

4

(
S2 +O(ε)

)
− t6

6

≤ aSt2 + bS2t4 − t6

6

for all ε ∈ (0, ε0). Fix ε ∈ (0, ε0). Then we can find t0 > 0 which is indepen-
dent of our choice of ε ∈ (0, ε0) such that I(tuε) ≤ 0 and ∥t0vε∥ > ρ. Set
v0 := t0vε. This concludes the proof. �
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Now we define

Γ := {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = 0, γ(1) = v0}

and

c := inf
γ∈Γ

max
u∈γ([0,1])

I(u),

where v0 is taken from Lemma 2.2. By Lemma 2.1 and Lemma 2.2, we have
c ≥ α and ensure the existence of (PS)c sequences for I. We prove the fol-
lowing lemma which is important to ensure the local compactness of PS
sequences for I.

Lemma 2.3. Let g satisfy (g1), (g2) and (g3) and assume that {uj} is a (PS)c
sequence for I with

c <
a

2
CK +

b

4
C2

K − 1

6S3
C3

K ,

where

CK =
1

2

(
bS3 +

√
(bS3)2 + 4aS3

)
.

Then there exists a function u ∈ H1
0 (Ω) such that (uj)+ → u+ in L6(Ω) up

to subsequences.

Proof. Set

c <
a

2
CK +

b

4
C2

K − 1

6S3
C3

K ,

and let {uj} ⊂ H1
0 (Ω) be a (PS)c sequence for I. We first claim {uj} is

bounded in H1
0 (Ω). In fact, since I(uj) → c and I ′(uj) → 0 in H−1(Ω), by

(g1) and (g3), we have

c+ 1 ≥ I(uj)−
1

θ
⟨I ′(uj), uj⟩+

1

θ
⟨I ′(uj), uj⟩

≥ a

(
1

2
− 1

θ

)
∥uj∥2 + b

(
1

4
− 1

θ

)
∥uj∥4

+

∫
Ω

(
1

θ
g(x, uj)uj −G(x, uj)

)
dx+

(
1

θ
− 1

6

)∫
Ω

(uj)
6
+dx− ∥uj∥

≥ a

(
1

2
− 1

θ

)
∥uj∥2 + b

(
1

4
− 1

θ

)
∥uj∥4 − ∥uj∥

for large j ∈ N. Since a, b ≥ 0 and a + b > 0, we can ensure the claim.
Hence by the weak compactness ofH1

0 (Ω) and the compactness of the Sobolev
embeddings, there exists a function u ∈ H1

0 (Ω) such that

uj ⇀ u weakly in H1
0 (Ω),

uj → u in Lp(Ω) for all 1 ≤ p < 6,

uj → u a.e. on Ω,

up to subsequences but still denoted {uj}. Moreover from second concentra-
tion compactness lemma by P. L. Lions([23]), there exist an at most countable
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set J , points {xk}k∈J ⊂ Ω and values {ηk}k∈J , {νk}k∈J ⊂ R+ such that up
to subsequences,

|∇uj |2 ⇀ dη ≥ |∇u|2 +
∑
k∈J

ηkδxk
,

(uj)
6
+ ⇀ dν = u6+ +

∑
k∈J

νkδxk
,

in the measure sense, here δx is the Dirac delta measure concentrated at
x ∈ R3 with mass 1. In addition we also have the inequality

ηk ≥ Sν
1
3

k (k ∈ J ). (2.6)

Now we claim that J = ∅. To ensure this, we suppose J ̸= ∅ to the contrary.
Fix k ∈ J . Define a smooth function ϕ such that ϕ = 1 on B(xk, ε), ϕ = 0
on B(xk, 2ε)

c and 0 ≤ ϕ ≤ 1 otherwise. In addition we can assume that
|∇ϕ| ≤ 2/ε. As I ′(uj) → 0 in H−1(Ω), we have

0 = lim
j→∞

⟨I ′(uj), ujϕ⟩

= lim
j→∞

{
(a+ b∥uj∥2)

∫
Ω

∇uj · ∇(ujϕ)dx− µ

∫
Ω

g(x, uj)ujϕdx

}
− lim

j→∞

∫
Ω

(uj)
6
+ϕdx

= lim
j→∞

{
(a+ b∥uj∥2)

∫
Ω

|∇uj |2ϕdx−
∫
Ω

(uj)
6
+ϕdx

}
+ o(1),

(2.7)

where o(1) → 0 as ε→ 0. The last inequality comes from the facts that

lim
j→∞

(a+ b∥uj∥2)
∫
Ω

(∇uj · ∇ϕ)ujdx = o(1) as ε→ 0, (2.8)

and

lim
j→∞

∫
Ω

g(x, uj)ujϕdx = o(1) as ε→ 0. (2.9)

We first verify (2.8). Actually, noting the boundedness and L2(Ω) convergence
of {uj} and using the Schwartz and the Hölder inequality we have

lim
j→∞

(a+ b∥uj∥2)
∫
Ω

(∇uj · ∇ϕ)ujdx

≤ C lim
j→∞

(∫
Ω

|∇uj |2dx
) 1

2
(∫

Ω

|uj |2|∇ϕ|2
) 1

2

≤ C

(∫
Ω∩B(xk,2ε)

u6dx

) 1
6
(∫

Ω∩B(xk,2ε)

|∇ϕ|3dx

) 1
3

≤ C

(∫
Ω∩B(xk,2ε)

u6dx

) 1
6

→ 0 as ε→ 0,
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where for the last inequality we use our assumption |∇ϕ| ≤ 2/ε. This ensures
(2.8). We next verify (2.9). By (g1) and (g2), we have the inequality (2.1).
Using that, we get

lim
j→∞

∫
Ω

g(x, uj)ujϕdx ≤ lim
j→∞

(
δ

∫
Ω∩B(xk,2ε)

u6jϕdx+ Cδ

∫
Ω∩B(xk,2ε)

u2jϕdx

)

≤ Cδ + Cδ

∫
Ω∩B(xk,2ε)

u2ϕdx,

for some constant C > 0, where for the last inequality we use the Sobolev
embedding, the boundedness and the L2(Ω) convergence of {uj}. Hence we
have

lim sup
ε→0

{
lim
j→∞

∫
Ω

g(x, uj)ujϕdx

}
≤ Cδ

for all δ > 0. This proves (2.9). From (2.7), we have

0 ≥
{(

a+ b

∫
Ω

ϕdη

)∫
Ω

ϕdη −
∫
Ω

ϕdν

}
+ o(1) as ε→ 0.

Taking ε→ 0, we have

0 ≥ (a+ bηk)ηk − νk.

Using the inequality (2.6) we estimate

ηk ≥ 1

2

(
bS3 +

√
(bS3)2 + 4aS3

)
= CK . (2.10)

Since I(uj) → c and I ′(uj) → 0 in H−1(Ω), recalling (g1) and (g3), we get

c = lim
j→∞

{
I(uj)−

1

θ
⟨I ′(uj), uj⟩

}
≥ lim

j→∞

{
a

(
1

2
− 1

θ

)
∥uj∥2 + b

(
1

4
− 1

θ

)
∥uj∥4

}
+ lim

j→∞

{
µ

∫
Ω

(
1

θ
g(x, uj)−G(x, uj)

)
dx+

(
1

θ
− 1

6

)∫
Ω

(uj)
6
+dx

}
.

Using (2.6) and (2.10), we have

c ≥ a

(
1

2
− 1

θ

)
ηk + b

(
1

4
− 1

θ

)
η2k +

(
1

θ
− 1

6

)
νk

≥ a

(
1

2
− 1

θ

)
CK + b

(
1

4
− 1

θ

)
C2

K +
1

S3

(
1

θ
− 1

6

)
C3

K

=
a

2
CK +

b

4
C2

K − 1

6S3
C3

K

where the last equality comes from the fact that aCK + bC2
K − C3

K/S
3 = 0.

This is a contradiction. Hence J = ∅. Consequently we have∫
Ω

(uj)
6
+dx→

∫
Ω

u6+ as j → ∞.

This leads us to the conclusion. �
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Remark 2.4. We can easily check that u is nonnegative. In fact, since {uj} is
bounded, there exist a subsequence, still denoted {uj}, and a constant A ≥ 0
such that ∥uj∥ → A. If A = 0 the conclusion follows. If A > 0, considering
the weak convergence, (g1), (g2), and Lp(Ω) convergence for all 1 ≤ p < 6,
we have

(a+ bA)

∫
Ω

∇u · ∇hdx =

∫
Ω

g(x, u)hdx−
∫
Ω

u5+h (h ∈ H1
0 (Ω)).

Taking h = u−, where u− := −min{0, u} and considering (g1), we have∫
Ω

|∇u−|2dx = 0.

The conclusion follows.

We ensure the local PS condition for I.

Lemma 2.5. Let g satisfy (g1)-(g3) and assume

c <
a

2
CK +

b

4
C2

K − 1

6S3
C3

K .

Then I satisfies the (PS)c condition.

Proof. Let {uj} be a (PS)c sequence for I. Then by (g1) and (g2), we have
that {uj} is bounded as in the proof of Lemma 2.3. Furtheremore, by Lemma
2.3 and Remark 2.4, there exists a nonnegative function u ∈ H1

0 (Ω) such that

uj ⇀ u weakly in H1
0 (Ω),

uj → u in Lp(Ω) for all 1 ≤ p < 6,

(uj)+ → u in L6(Ω),

up to subsequences, but still denoted {uj}. Since I ′(uj) → 0 in H−1(Ω) and
{uj} is bounded, we have

⟨I ′(uj), (uj − u)⟩ = o(1) (2.11)

where o(1) → 0 as j → ∞. Here we claim∫
Ω

g(x, uj)(uj − u)dx = o(1) as j → ∞, (2.12)

and ∫
Ω

(uj)
5
+(uj − u)dx = o(1) as j → ∞. (2.13)
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We first verify (2.12). Using (2.1) and the Hölder and the Schwartz inequality
we have

lim sup
j→∞

∣∣∣∣∫
Ω

g(x, uj)(uj − u)dx

∣∣∣∣
≤ lim sup

j→∞

(
δ

∫
Ω

|uj |5|uj − u|dx+ Cδ

∫
Ω

|uj ||uj − u|dx
)

≤ δ lim sup
j→∞

(∫
Ω

u6jdx

) 5
6
(∫

Ω

|uj − u|6dx
) 1

6

+ Cδ lim sup
j→∞

(∫
Ω

u2jdx

) 1
2
(∫

Ω

|uj − u|2dx
) 1

2

≤ Cδ

for all δ > 0, where for the last inequality we use the Sobolev embedding and
the boundedness and L2(Ω) convergence of {uj} . This proves (2.12). Next
we show (2.13). Actually, by the Hölder inequality, the boundedness of {uj}
and the L6(Ω) convergence of (uj)+ we get

lim sup
j→∞

∣∣∣∣∫
Ω

(uj)
5
+(uj − u)dx

∣∣∣∣ ≤ lim sup
j→∞

(∫
Ω

(uj)
6
+dx

) 5
6
(∫

Ω

|(uj)+ − u|6dx
) 1

6

= 0,

here we use the relation (uj)
5
+uj = (uj)

6
+. This shows (2.13). Consequently

from (2.11)-(2.13), we conclude that

(a+ b∥uj∥2)
∫
Ω

∇uj · ∇(uj − u)dx = o(1) as j → ∞.

By the weak convergence, we have ∥uj∥ → ∥u∥ as j → ∞. This completes
the proof. �

The following lemma gives a sufficient condition on g (which is weaker
than (g4)) to ensure the compactness of (PS)c sequences for I. The argument
is strictly based on Lemma 2.1 in [8].

Lemma 2.6. Let g satisfy (g1) and (g2). We assume that there exist a nonempty
open set ω ⊂ Ω and a measurable function g(u) such that g(x, u) ≥ g(u) ≥ 0
for all x ∈ ω and u ≥ 0 and further,

lim
ε→0

ε2
∫ ε−1

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2ds = ∞,

then there exists a constant ε1 > 0 such that

max
t≥0

I(tvε) <
a

2
CK +

b

4
C2

K − 1

6S3
C3

K

for all ε ∈ (0, ε1).
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Proof. We define vε as in the paragraph above Lemma 2.2. Take t ≥ 0. By
(2.5), we have

I(tvε) =
at2

2
∥vε∥2 +

bt4

4
∥vε∥4 − µ

∫
Ω

G(x, tvε)dx− t6

6
=: f(t). (2.14)

We put tε so that f(tε) = maxt≥0f(t). If tε = 0, the conclusion follows. We
assume tε > 0 and put Aε := ∥vε∥2. Then noting (g1) and (g2), we get

aAε + bt2εA
2
ε − µ

∫
Ω

g(x, tεvε)vε
tε

dx− t4ε = 0.

Since g(x, u) ≥ 0 for all x ∈ Ω and u ≥ 0 by (g1), we have

tε ≤
{
1

2

(
bA2

ε +
√
(bA2

ε)
2 + 4aAε

)} 1
2

=: Tε. (2.15)

Since the map

t 7→ at2

2
Aε +

bt4

4
A2

ε −
t6

6

is increasing on the interval [0, Tε], we have

I(tvε) ≤ I(tεvε)

≤ aT 2
ε

2
Aε +

bT 4
ε

4
A2

ε −
T 6
ε

6
− µ

∫
Ω

G(x, tεvε)dx

≤ a

2
CK +

b

4
C2

K − 1

6S3
C3

K +O(ε)− µ

∫
Ω

G(x, tεvε)dx

after some calculation. Hence if

lim
ε→0

ε−1

∫
Ω

G(x, tεvε)dx = ∞, (2.16)

we can take ε1 > 0 so small that

sup
t≥0

I(tvε) <
a

2
CK +

b

4
C4

K − 1

6S3
C3

K

for all ε ∈ (0, ε1). This finishes the proof. Now we show (2.16). To this end,
first notice that

tε →
{
1

2

(
bS4 +

√
(bS4)2 + 4aS2

)} 1
2

. (2.17)

(2.17) comes from the fact that∫
Ω

g(x, tεvε)vε
tε

dx→ 0 (2.18)

as ε→ 0. In fact, by (2.1), we get∫
Ω

g(x, tεvε)vε
tε

dx ≤ δt4ε + Cδtε

∫
Ω

v2εdx
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for all δ > 0 and some constant Cδ > 0. On the other hand, since Tε is
bounded, tε is also bounded by (2.15). Using this fact and (2.5), we have

lim sup
ε→0

∫
Ω

g(x, tεvε)vε
tε

dx ≤ Cδ

for some constant C > 0 and all δ > 0. This ensures (2.18). After this, the
argument is completely same as that in the proof of Lemma 2.1 in [8]. But
we shall proceed with the rest for reader’s convenience. By the assumption
on g, recalling (2.17) and (2.5), we have

ε−1

∫
Ω

G(x, tεvε)dx ≥ ε−1

∫
ω

G(tεvε)dx

≥ ε−1

∫
ω

G

(
Cε

ε
1
2 τ(x)

(ε2 + |x|2) 1
2

)
dx

≥ Cε−1

∫ r

0

G

(
Cε

ε
1
2

(ε2 + s2)
1
2

)
s2ds

≥ Cε2
∫ r

ε

0

G

(
Cε

ε−
1
2

(1 + s2)
1
2

)
s2ds

≥ Cε2
∫ C

ε

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2ds.

for some constant C > 0 where Cε denotes some constant which converges
some positive values as ε → 0 and for the last inequality we perform an
appropriate rescaling for ε. If C ≥ 1, (2.18) immediately follows. If C < 1,
we have

ε2
∫ C

ε

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2dx = ε2

∫ 1
ε

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2dx

− ε2
∫ C

ε

1
ε

G

(
ε−

1
2

(1 + s2)
1
2

)
s2dx.

Put

Bε := ε2
∫ C

ε

1
ε

G

(
ε−

1
2

(1 + s2)
1
2

)
s2dx.

Using (2.1), we get for some δ > 0,

Bε ≤ ε2

δ ∫ C
ε

1
ε

∣∣∣∣∣ ε−
1
2

(1 + s2)
1
2

∣∣∣∣∣
6

s2ds+ Cδ

∫ C
ε

1
ε

∣∣∣∣∣ ε−
1
2

(1 + s2)
1
2

∣∣∣∣∣
2

s2ds


≤ C

for some constant C > 0. This concludes (2.18). �

We can also conclude the following lemma as in the proof of Corollary
2.3 in [8].
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Lemma 2.7. Suppose g satisfies (g1), (g2) and (g4). Then g satisfies the
hypothesis of Lemma 2.6.

Proof. Set g(u) := infx∈ω g(x, u). By (g4), for all M > 0, there exists a
constant R > 0 such that G(u) ≥ Mu4 for all u ≥ R. We note that there
exists a constant C > 0 which is independent of ε > 0 such that

ε−
1
2

(1 + s2)
1
2

≥ R

for all s ≤ Cε−
1
2 if ε > 0 is sufficiently small. Using this fact, we get

ε2
∫ ε−1

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2ds ≥ ε2

∫ Cε−
1
2

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2ds

≥M

∫ Cε−
1
2

0

s2

(1 + s2)2

for all M > 0 and small ε > 0. Hence we have

lim inf
ε→0

{
ε2
∫ ε−1

0

G

(
ε−

1
2

(1 + s2)
1
2

)
s2ds

}
≥ CM

for all M > 0 and some constant C > 0 which is independent of M > 0. This
concludes the proof. �

Finally we prove Theorem 1.1.

Proof of Theorem 1.1. Let g satisfy (g1)-(g4). By Lemma 2.7, g satisfy the
assumption of Lemma 2.6. Take ε ∈ (0,min{ε0, ε1}) where ε0 > 0 and ε1 > 0
are took from the proof of Lemma 2.1 and Lemma 2.6 respectively. Define
v0 := t0vε as in the proof of Lemma 2.2. Now by Lemma 2.1 and Lemma
2.2, I satisfies the mountain pass geometry. Moreover from Lemma 2.6 and
Lemma 2.5, I satisfies the (PS)c condition. Hence by the mountain pass
theorem, we conclude that I has a nontrivial critical point u ∈ H1

0 (Ω) with
its critical value c ≥ α. Furthermore, similarly to Remark 2.4, we can show
that u ∈ H1

0 (Ω) is nonnegative. The smoothness and positivity of u is shown
as we note in the end of section 1. This finishes the proof. �

Proof of Corollary 1.2. We assume 4 < q < 6 and g(x, u) := uq. For the
proof, we consider instead g(x, u) := (u+)

q. Then clearly g satisfies (g1)-(g4).
By Theorem 1.1, we conclude the proof. �

3. Proof of Theorem 1.3

In section 3, we prove Theorem 1.3 and Corollary 1.4. Assume a > 0 and
b ≥ 0. In addition, let g satisfy (g1), (g2), (g5) and (g6). But if there exists
a constant 4 < θ < 6 such that g(x, u)u− θG(u) ≥ 0 for all x ∈ Ω and t ≥ 0,
the proof is simpler. We can refer to the argument in [2] for that situation.
Hence we only consider the following condition instead of (g5):
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(g5)’ There exists a constant θ > 0 such that 2 < θ ≤ 4 and g(x, u)u −
θG(x, u) ≥ 0 for all x ∈ Ω and u ≥ 0.

As in section 2, we define the energy functional associated to (K1) so that

Iµ(u) =
a

2
∥u∥2 + b

4
∥u∥4 − µ

∫
Ω

G(x, u)dx− 1

6

∫
Ω

u6+,

where G(x, u) :=
∫ u

0
g(x, t)dt and u+ := max{u, 0}. Inspired by [19], we

introduce a truncation method. That is also seen in earlier researches [16] and
[17]. Let ψ be a smooth function on [0,∞) such that ψ = 1 on [0, 1), ψ = 0
on [2,∞) and 0 ≤ ψ ≤ 1 otherwise. Furthermore, we assume −2 ≤ ψ′ ≤ 0 on
[0,∞). For T > 0, define a C1 cut off functional ΦT (u) on H

1
0 (Ω) so that

ΦT (u) := ψ

(
∥u∥2

T 2

)
.

We consider a truncated functional on H1
0 (Ω) such that

JT
µ (u) =

a

2
∥u∥2 + b

4
∥u∥4ΦT (u)− µ

∫
Ω

G(x, u)dx− 1

6

∫
Ω

u6+dx.

Then by (g1) and (g2), we can easily verify that JT
λ is well defined and

continuously Fréchet differentiable on H1
0 (Ω). Its first Fréchet derivative is

given by

⟨JT
µ

′
(u), h⟩ =

{
(a+ b∥u∥2ΦT (u) +

b

2T 2
∥u∥4ψ′

(
∥u∥2

T 2

)}∫
Ω

∇u · ∇hdx

−
∫
Ω

g(x, u)hdx−
∫
Ω

u5+hdx (h ∈ H1
0 (Ω)).

Choose T > 0 as

T = min

{( a
8b

) 1
2

,

{
a(θ − 2)

4b(4− θ)

} 1
2

}
. (3.1)

Note that by (3.1) and the facts that |∥u∥4ψ′(∥u∥2/T 2)| ≤ 8T 4 for all u ∈
H1

0 (Ω), the following relations hold.

a+
b

2T 2
∥u∥4ψ′

(
∥u∥2

T 2

)
≥ a

2
, (3.2)

a

(
1

2
− 1

θ

)
− 2b

(
1

θ
− 1

4

)
T 2 ≥ 0, (3.3)

and

8b

(
1

θ
− 1

4

)
T 4 ≤ a

(
1

2
− 1

θ

)
T 2. (3.4)

Note also that if u ∈ H1
0 (Ω) and ∥u∥ < T , JT

µ (u) = Iµ(u) on some neighbor-

hood of u. Thus if u is a critical point of JT
µ with ∥u∥ < T , u is also a critical

point of Iµ. From now on, we show the existence of a nontrivial critical point
u of JT

µ with ∥u∥ < T . Since we fix T > 0 as in (3.1), we denote JT
µ (u) and

ΦT (u) as Jµ(u) and Φ(u) respectively for simplicity.
We begin with following two lemmas.
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Lemma 3.1. We assume g satisfies (g1) and (g2). Then there exist constants
α, ρ > 0 such that Jµ(u) ≥ α for all u ∈ H1

0 (Ω) with ∥u∥ = ρ.

Proof. For ρ > 0, take u ∈ H1
0 (Ω) with ∥u∥ = ρ. By (g1) and (g2), as in the

proof of Lemma 2.1, we reach to the inequality

Jµ(u) ≥
a

4
∥u∥2 − C∥u∥6 =

a

4
ρ2 − Cρ6

for some constant C > 0. Hence by taking ρ small enough, we conclude that
there exists a constant α > 0 such that

Jµ(u) ≥ α.

This finishes the proof. �

Lemma 3.2. Suppose g satisfies (g1), (g2) and (g6). Then there exists a func-
tion v0 ∈ H1

0 (Ω) such that ∥v0∥ ≥ ρ and Jµ(v0) ≤ 0.

Proof. As in the proof of corollary 2.4 in [8], we assume 0 ∈ ω and take
a function ξ ∈ C∞

0 (ω) with ξ(0) = 1 and a constant 0 < k < 1/2. Set
v := ξ|x|−k. Then v ∈ H1

0 (Ω) by a null extension. Take t > 0. Since by (g1),
G(x, t) ≥ 0 for all x ∈ Ω and t ∈ R, we get

Jµ(tv) ≤
at2

2
∥v∥2 + bt4

4
∥v∥4 − t6

6

∫
Ω

v6dx.

Thus we have Jµ(tv) → −∞ as t→ ∞. Hence there exists a constant t0 > 0
such that if v0 := t0v, ∥v0∥ ≥ ρ and Jµ(v0) ≤ 0. This concludes the proof. �

As in section 2 we define

Γ := {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = 0, γ(1) = v0}

and
cµ := inf

γ∈Γ
max

u∈γ([0,1])
Jµ(u).

We prove the next lemma.

Lemma 3.3. Let g satisfy (g1), (g2) and (g6). Then cµ → 0 as µ→ ∞.

Proof. Let v be as defined in the proof of Lemma 3.2. By the definition of v
and (g1), we have

Jµ(tv) ≤
at2

2
∥v∥2 + bt4

4
∥v∥4 − µ

∫
ω

G(x, tv)dx− t6

6

∫
Ω

v6dx =: f(t).

We put tµ > 0 so that f(tµ) = maxt≥0 f(t). Then, using (g2) we have

a∥v∥2 + bt2µ∥v∥4 −
µ

tµ

∫
ω

g(x, tµv)vdx− t4µ

∫
Ω

v6 = 0. (3.5)

By (g1), we get

a∥v∥2 + bt2µ∥v∥4 ≥ t4µ

∫
Ω

v6.

Hence there exists a constant C > 0 such that tµ ≤ C for all µ > 0. Further-
more tµ → 0 as µ → ∞. If not, there exists a sequence {µn} and a constant
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β > 0 such that µn → ∞ and tµn → β as n→ ∞. Then by (g1) and (g2), we
have

1

tµn

∫
ω

g(x, tµnv)vdx→ 1

β

∫
ω

g(x, βv)vdx > 0.

The positivity of the right hand side is ensured by (g6) and the definition
of v. But in view of (3.5),

∫
ω
g(x, βv)vdx must be 0. This is a contradiction.

Therefore we obtain

0 < cµ ≤ max
t≥0

Jµ(tv) ≤ max
t≥0

f(t) <
at2µ
2

∥v∥2 +
bt4µ
4

∥v∥4 → 0.

This completes the proof. �

Next we prove an important lemma which ensures the local compactness
of the PS sequences for Jµ.

Lemma 3.4. We assume g satisfies (g1), (g2) and (g5)’ and further, {uj} is
a (PS)c sequence for Jµ with

c <

(
1

θ
− 1

6

)(
aS

2

) 3
2

.

Then {(uj)+} has a subsequence which strongly converges in L6(Ω).

Proof. Let {uj} ⊂ H1
0 (Ω) be a (PS)c sequence for Jµ with

c <

(
1

θ
− 1

6

)(
aS

2

) 3
2

.

Firstly we claim that {uj} is bounded in H1
0 (Ω). Actually, since Jµ(uj) → c

and J ′
µ(uj) → 0 in H−1(Ω), we have by (g1) and (g5)’,

c+ 1 ≥ Jµ(uj)−
1

θ
⟨J ′

µ(uj), uj⟩+
1

θ
⟨J ′

µ(uj), uj⟩

≥ a

(
1

2
− 1

θ

)
∥uj∥2 − b

(
1

θ
− 1

4

)
∥uj∥4Φ(u)−

b

2θT 2
∥uj∥6ψ′

(
∥uj∥2

T 2

)
+

∫
Ω

(
1

θ
g(x, uj)−G(x, uj)

)
dx+

(
1

θ
− 1

6

)∫
Ω

(uj)
6
+dx− ∥uj∥

≥ a

(
1

2
− 1

θ

)
∥uj∥2 − 4b

(
1

θ
− 1

4

)
T 4 − ∥uj∥,

for large j ∈ N, where for the last inequality we use the facts that ∥u∥4Φ(u) ≤
4T 4 for all u ∈ H1

0 (Ω) and ψ
′ ≤ 0 on [0,∞). This inequality proves the claim.

Consequently as in the previous section, we conclude that there exists a
function u ∈ H1

0 (Ω) such that

uj ⇀ u weakly in H1
0 (Ω),

uj → u in Lp(Ω) for all 1 ≤ p < 6,

uj → u a.e. on Ω,
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up to subsequences but still denoted {uj}. Furthermore by the second con-
centration compactness lemma, there exist an at most countable set J , points
(xk)k∈J ⊂ Ω and positive values (ηk)k∈J , (νk)k∈J with

ηk ≥ Sν
1
3

k (k ∈ J ),

such that

|∇uj |2 ⇀ dη ≥ |∇u|2 +
∑
k∈J

ηkδxk
,

(uj)
6
+ ⇀ dν = u6+ +

∑
k∈J

νkδxk
,

in the measure sense. To complete the proof, we claim J = ∅. If not, choose
k ∈ J . We define a test function ϕ ∈ C∞

0 (R3) such that ϕ = 1 on B(xk, ε),
ϕ = 0 on B(xk, 2ε)

c, and 0 ≤ ϕ ≤ 1 otherwise. In addition we assume
|∇ϕ| ≤ 2/ε. Then we have

0 = lim
j→∞

⟨J ′
µ(uj), ujϕ⟩

= lim
j→∞

{
a+ b∥uj∥2Φ(uj) +

b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

∇uj · ∇(ujϕ)dx

− lim
j→∞

∫
Ω

g(x, uj)ujϕdx− lim
j→∞

∫
Ω

(uj)
6
+ϕdx.

(3.6)

Now we estimate the first and second terms in the right hand side of (3.6).
We compute the first term so that

lim
j→∞

{
a+ b∥uj∥2Φ(uj) +

b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

∇uj · ∇(ujϕ)dx

= lim
j→∞

{
a+ b∥uj∥2Φ(uj) +

b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

|∇uj |2ϕdx

+ lim
j→∞

{
a+ b∥uj∥2Φ(uj) +

b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

(∇uj · ∇ϕ)ujdx

≥ lim
j→∞

a

2

∫
Ω

|∇uj |2ϕdx+ o(1),

(3.7)

where o(1) → 0 as ε → 0. The last inequality comes from (3.2) and the fact
that

lim
j→∞

∣∣∣∣{a+ b∥uj∥2Φ(uj) +
b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

(∇uj · ∇ϕ)ujdx
∣∣∣∣

= o(1) as ε→ 0.

(3.8)
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We verify (3.8). Using the facts ∥u∥2Φ(u) ≤ 2T 2 and |∥uj∥4ψ′(∥uj∥2/T 2)| ≤
8T 4 for all u ∈ H1

0 (Ω) we estimate

lim
j→∞

∣∣∣∣(a+ b∥uj∥2Φ(uj) +
b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

))∫
Ω

∇uj · ∇ϕujdx
∣∣∣∣

≤ (a+ 6bT 2) lim
j→∞

∫
Ω∩B(xk,2ε)

|∇uj ||uj∇ϕ|dx

≤ (a+ 6bT 2) lim
j→∞


(∫

Ω

|∇uj |2dx
) 1

2

(∫
Ω∩B(xk,2ε)

|uj∇ϕ|2dx

) 1
2


≤ C

(∫
Ω∩B(xk,2ε)

u6dx

) 1
6
(∫

Ω∩B(xk,2ε)

|∇ϕ|3dx

) 1
3

≤ C

(∫
Ω∩B(xk,2ε)

u6dx

) 1
6

→ 0 as ε→ 0,

where for the second inequality we use the Schwartz inequality, and for the
third inequality we use the boundedness and L2(Ω) convergence of {uj} and
the Hölder inequality, and for the fourth inequality we use our assumption
that |∇ϕ| ≤ 2/ε. This verifies (3.8). Next using (2.1), we compute the second
term in the right hand side of (3.6) similarly to (2.9) in the previous section
so that

lim
j→∞

∫
Ω

g(x, uj)ujϕdx = o(1) as ε→ 0. (3.9)

Using the computations (3.7) and (3.9) for (3.6), we get

0 ≥ lim
j→∞

(
a

2

∫
Ω

|∇uj |2ϕdx−
∫
Ω

(uj)
6
+ϕdx

)
+ o(1)

≥ a

2

∫
Ω

ϕdη −
∫
Ω

ϕdν + o(1) as ε→ 0.

Taking ε→ 0, we obtain

νk ≥ a

2
ηk.

Recalling that ηk ≥ Sν
1
3

k , we estimate

νk ≥
(
aS

2

) 3
2

. (3.10)
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Since Jµ(uj) → c and J ′
µ(uj) → 0 in H−1(Ω), we have by (3.3), (g1), (g5)’

and the fact that ψ′ ≤ 0,

c = lim
j→∞

{
Jµ(uj)−

1

θ
⟨J ′

µ(uj), uj⟩
}

= lim
j→∞

[{
a

(
1

2
− 1

θ

)
− b

(
1

θ
− 1

4

)
∥uj∥2Φ(uj)

}∫
Ω

|∇uj |2dx
]

− lim
j→∞

b

2θT 2
∥uj∥6ψ′

(
∥uj∥2

T 2

)
+ lim

j→∞

∫
Ω

1

θ
{g(uj)uj −G(uj)}dx

+ lim
j→∞

(
1

θ
− 1

6

)∫
Ω

(uj)
6
+dx

≥
(
1

θ
− 1

6

)(
aS

2

) 3
2

.

This is a contradiction. Hence J = ∅. Consequently we have∫
Ω

(uj)
6
+ →

∫
Ω

u6+dx as j → ∞,

up to subsequences but still denoted {uj}. This completes the proof. �

Remark 3.5. As in Remark 2.4, we can show that u is nonnegative.

Using Lemma 3.1-Lemma 3.4 we prove the existence of a nontrivial
critical point of Jµ.

Lemma 3.6. Let g satisfies (g1), (g2), (g5)’ and (g6). Then there exists a
constant µ∗ ≥ 0 such that Jµ has a nontrivial critical point for all µ > µ∗.

Proof. From Lemma 3.3, there exists a constant µ∗ ≥ 0 such that

cµ <

(
1

θ
− 1

6

)(
aS

2

) 3
2

for all µ > µ∗. For each µ > µ∗, let {uj} be a (PS)cµ sequence for Jµ. Then by

Lemma 3.4 and Remark 3.5, there exists a nonnegative function u ∈ H1
0 (Ω)

such that

(uj)+ → u in L6(Ω) (3.11)

up to subsequences. From now on we prove that Jµ satisfies the (PS)cµ con-

dition. Since (uj − u) is bounded in H1
0 (Ω), by the definition, we have

⟨J ′
µ(uj), uj − u⟩ = o(1) (3.12)

where o(1) → 0 as j → ∞. Furthermore, noting u is nonnegative, similarly
to (2.12) and (2.13) in section 2, we have∫

Ω

g(uj)(uj − u)dx = o(1) as j → ∞, (3.13)

and ∫
Ω

(uj)
5
+(uj − u)dx = o(1) as j → ∞. (3.14)
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Combining (3.12)-(3.14), we get{
a+ b∥uj∥2Φ(uj) +

b

2T 2
∥uj∥4ψ′

(
∥uj∥2

T 2

)}∫
Ω

∇uj ·∇(uj − u)dx

= o(1) as j → ∞.

Noting (3.2) and the weak convergence of {uj}, we have

∥uj∥ → ∥u∥ as j → ∞.

This proves the (PS)cµ condition for Jµ. Now noting Lemma 3.1, Lemma 3.2,
and the (PS)cµ conditions for Iµ, the mountain pass theorem concludes the
proof. �

Finally we prove Theorem 1.3.

Proof of Theorem 1.3. We first choose µ∗ ≥ 0 so that

cµ < min

{(
1

θ
− 1

6

)(
aS

2

) 3
2

, 4b

(
1

θ
− 1

4

)
T 4

}
for all µ > µ∗. Then by Lemma 3.6, for every µ > µ∗, there exists a nontrivial
critical point u ∈ H1

0 (Ω) of Jµ with critical value cµ. As we see in the first part
of this section, it is enough to show that ∥u∥ < T . In fact, since Jµ(u) = cµ,
we have

a

2
∥u∥2 + b

4
∥u∥4Φ(u) = µ

∫
Ω

G(x, u)dx+
1

6

∫
Ω

u6+dx+ cµ

≤ µ

θ

∫
Ω

g(x, u)udx+
1

θ

∫
Ω

u6+dx+ cµ

(3.15)

by (g5)’. On the other hand, since u is a critical point of Jµ, we obtain

1

θ

{
a+ b∥u∥2Φ(u) + b

2T 2
∥u∥4ψ′

(
∥u∥2

T 2

)}
∥u∥2

=
µ

θ

∫
Ω

g(x, u)udx+
1

θ

∫
Ω

u6+dx.

(3.16)

Substituting (3.16) into (3.15), we compute

a

(
1

2
− 1

θ

)
∥u∥2 ≤ b

(
1

θ
− 1

4

)
∥u∥4Φ(u) + b

2θT 2
∥u∥6ψ′

(
∥u∥2

T 2

)
+ cµ

≤ 4b

(
1

θ
− 1

4

)
T 4 + cµ,

(3.17)

here we use the fact that ∥u∥4Φ(u) ≤ 4T 4 and ψ′ ≤ 0 on [0,∞). Now we
assume ∥u∥ ≥ T to the contrary. Then we have

a

(
1

2
− 1

θ

)
T 2 ≤ 4b

(
1

θ
− 1

4

)
T 4 + cµ.
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But from our choice of T = T (a, b, θ) > 0 and µ > µ∗, recalling (3.4), we
have

4b

(
1

θ
− 1

4

)
T 4 ≤ cµ < 4b

(
1

θ
− 1

4

)
T 4.

This is a contradiction. Hence ∥u∥ < T and thus, u is a critical point of Iµ. As
in the proof of Theorem 1.1, we can ensure the smoothness and the positivity
of u. This finishes the proof. �
Proof of Corollary 1.4. Considering 1 < q ≤ 3 and g(x, u) := (u+)

q, we can
prove Corollary 1.4 by Theorem 1.3. �

4. Additional results

In Theorem 1.3 and Corollary 1.4, we do not consider the case a = 0, b > 0.
They also do not consider such a case in [13]. Thus we naturally ask about
the existence of solutions for such situation. As we shall discuss below, the
situation seems to be different from the case a > 0 and b ≥ 0. We have
partially but positive result for the existence. For our additional results, we
consider the following problem. Let 1 < q ≤ 3 and consider

−∥u∥2∆u = µuq + u5 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(K2)

Firstly we can prove the existence of minimal solution of (K2) when 1 < q < 3
(and also get the same conclusion when 0 < q ≤ 1). We give the following
theorem.

Theorem 4.1. Let 1 < q < 3. Then there exists a constant m0 > 0 such that
(K2) has a positive (minimal) solution for all 0 < µ < m0.

We can prove Theorem 4.1 by a few modification of the argument in
[32]. Thus we leave the proof for readers. How about the case q = 4? For this
case, we define

µ1 = inf{∥u∥4 |
∫
Ω

u4dx = 1}.

We can easily check that µ1 is strictly positive and achieved by some function
ϕ1 > 0 in Ω. Then it is natural to consider the Kirchhoff type nonlinear
eigenvalue problem: {

−∥ϕ∥2∆ϕ = µϕ3 in Ω,

ϕ = 0 on ∂Ω.
(E)

In [27], they prove the existence of unbounded sequences of eigenvalues of
(E). Some additional results for the problem (E) is obtained in [19]. Using
the principal eigenvalue of (E) i.e. µ1 = µ1(Ω) > 0, we state the following
theorem.

Theorem 4.2. We assume 0 ∈ Ω and there exists a constant R > 0 such that
B(0, R) ⊂ Ω. Then if 3π3/4R < µ < µ1(Ω), there exists a solution of (K2).
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Remark 4.3. Since we do not know the precise lower bound for the value µ1 =
µ1(Ω) > 0 (but we can easily confirm that at least µ1(Ω) ≥ {(3π)7/45}1/3/R
if Ω = B(0, R)), the set {µ ∈ R | 3π3/4R < µ < µ1(Ω)} may be empty.
Furthermore the necessity of the condition on µ > 0 seems to be difficult to
prove. These are left for our future works.

In this section, we prove Theorem 4.2. As a matter of the fact, for this
case we can employ the minimizing argument as in [8]. Define

K := inf

{
∥u∥4

∣∣∣ u ∈ H1
0 (Ω),

∫
B

u6dx = 1

}
and

Kµ := inf

{
∥u∥4 − µ

∫
B

u4dx
∣∣∣ u ∈ H1

0 (Ω),

∫
B

u6dx = 1

}
.

Notice that K = S2 where S is defined as in the previous sections. Following
the argument in [8], we shall show the existence of a minimizer of Kµ.

Lemma 4.4. If Kµ < S2, Kµ has a nontrivial and nonnegative minimizer.

Proof. We assume Kµ < S2. Let {uj} be a minimizing sequence of Kµ. Then
there holds

∫
B
u6jdx = 1 and

∥uj∥4 − µ

∫
Ω

u4j = Kµ + o(1) (4.1)

where o(1) → 0 as j → ∞. Then from the embedding L6(Ω) ↪→ L4(Ω), we
have that {uj} is bounded in H1

0 (Ω). Hence by the weak compactness of
H1

0 (Ω) and the compactness of the Sobolev embeddings, we get

uj ⇀ u weakly in H1
0 (Ω),

uj → u in Lp(Ω) for all 1 ≤ p < 6,

uj → u a.e. on Ω,

up to subsequences. Notice that ∥uj∥4 ≥ S2 by the definition of S. Then from
(4.1), L4(Ω) convergence of {uj} and our assumption, we have∫

Ω

u4dx ≥ 1

µ

(
S2 −Kµ

)
> 0.

Hence u is nontrivial. Now we put vj := uj−u. Then by the weak convergence,
we have

∥uj∥4 = ∥vj∥4 + ∥u∥4 + 2∥vj∥2∥u∥2 + o(1) as j → ∞. (4.2)

In addition by the Vitali convergence theorem,

1 =

∫
Ω

u6jdx =

∫
Ω

v6jdx+

∫
Ω

u6dx+ o(1) as j → ∞.
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Thus we have by the definition of S,

1 =

∫
Ω

v6jdx+

∫
Ω

u6dx+ o(1)

≤
(∫

Ω

v6jdx

) 2
3

+

(∫
Ω

u6dx

) 2
3

+ o(1)

≤ S−2∥vj∥4 +
(∫

Ω

u6dx

) 2
3

+ o(1),

(4.3)

as j → ∞. Now we claim

∥u∥4 − µ

∫
Ω

u4dx ≤ Kµ

(∫
Ω

u6dx

) 2
3

. (4.4)

In fact, let us first assume Kµ > 0. Then we have by (4.3) that

Kµ ≤ Kµ

S2
∥vj∥4 +Kµ

(∫
Ω

u6dx

) 2
3

+ o(1).

Combining this inequality and (4.1), and using the relation (4.2), we have
(4.4). Next if Kµ ≤ 0, we have

Kµ ≤ Kµ

(∫
Ω

u6dx

) 2
3

.

Again combining this inequality and (4.1), and using (4.2), we obtain (4.4).
In addition, from above arguments we can also ensure that vj must converge
to 0 in H1

0 (Ω). Thus we have
∫
Ω
u6dx = 1. From this fact and (4.4), we

conclude that u is a nontrivial minimizer of Kµ. Furthermore since we can
trivially replace u by |u|, we get the conclusion of Lemma (4.4). �

Let us ensure the hypothesis of Lemma 4.4. We assume 0 ∈ Ω and there
exists a constant R > 0 such that B(0, R) ⊂ Ω. We define a cut off Talenti
function uε in Ω similarly to the one in Section 2 so that

uε(x) :=
ε

1
2σ(|x|)

(ε2 + |x|2) 1
2

,

here σ(r) is an appropriate cut off function such that σ(0) = 1, σ′(0) =
σ(R) = 0 and σ(r) = 0 if r > R. Then we have uε ∈ H1

0 (Ω). We estimate as
in [8], 

∫
Ω
|∇uε|2dx = K1 + 4πε

∫ R

0
|σ′(r)|2dr +O(ε2),∫

Ω
u6εdx = K3

2 +O(ε2),∫
Ω
u4εdx = π2 +O(ε2),

(4.5)

where K1 := (3π2)/4 and K2 := (π2/4)1/3 with K1/K2 = S. As in section 2,
we define

vε(x) =
uε(x)(∫

B
u6εdx

) 1
6

.
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Then we get 
∫
Ω
|∇vε|2dx = S + 4πε

K2

∫ R

0
|σ′(r)|2dr +O(ε2),∫

Ω
v6εdx = 1,∫

Ω
v4εdx = π2

K2
2
ε+O(ε2).

(4.6)

We prove the next lemma.

Lemma 4.5. If µ > 3π3/4R, Kµ < S2.

Proof. Using (4.6), we estimate

Kµ ≤ ∥vε∥4 − µ

∫
Ω

v4εdx

≤ S2 − 1

K2
2

(
π2µ− 8πK1

∫ R

0

|σ′(r)|2dr

)
ε+O(ε2).

We take σ(r) = cos(πr/2R). Then
∫ 1

0
|σ′(r)|2dr = π2/8R. Hence taking ε > 0

sufficiently small, we conclude that if µ > 3π3/4R, Kµ < S2. This gives the
conclusion. �

Finally we prove Theorem 4.2.

Proof of Theorem 4.2. First choose 3π3/4R < µ < µ1. Then Kµ < S2 by
Lemma 4.5. Hence by Lemma 4.4, we have a nontrivial minimizer u ∈ H1

0 (Ω)
of Kµ. Thus there exists a Lagrange multiplier λ ∈ R such that −∥u∥2∆u−
µu3 = λu5 in Ω. We have further, λ = Kµ. Since µ < µ1, Kµ > 0 from the
definition of µ1 > 0. Consequently, after an appropriate rescaling, we have
the existence of a nontrivial and nonnegative solution of (K2). We can ensure
the smoothness and positivity of the solution similarly to the argument in
previous sections. This completes the proof. �

Appendix A. Nonexistence results

In Appendix A, we prove the nonexistence results for (K1), that is, we prove
Theorem 1.5 and Theorem 1.6. To do that, we introduce a Kirchhoff type
Pohozaev identity.

Lemma A.1. We assume a, b ≥ 0 and a+ b > 0 and suppose g satisfies (g1)
and (g2). Then if u is a solution of (K1), the following identity holds.(

a+ b∥u∥2
)

2
∥u∥2 − 3µ

∫
Ω

G(x, u)dx− 1

2

∫
Ω

u6dx

+
a+ b∥u∥2

2

∫
∂Ω

(x · ν)
∣∣∣∣∂u∂ν

∣∣∣∣2 dσ = 0,

(A.1)

where ν and ∂/∂ν denote the outer normal vector and the outer normal deriv-
ative on ∂Ω respectively, and further σ is the 2 dimensional surface measure
on ∂Ω.
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Proof. Fix a solution u of (K1). We define

m(∥u∥2) := (a+ b∥u∥2)−1

and

f(x, u) := µg(x, u) + u5.

Then u is a solution of{
−∆u = m(∥u∥2)f(x, u) in Ω,

u = 0 on ∂Ω.

The Pohozaev type identity for the solutions of the above equation is shown
by an usual procedure. We get

1

2
∥u∥2 − 3m(∥u∥2)

∫
Ω

F (x, u)dx+
1

2

∫
∂Ω

(x · ν)
∣∣∣∣∂u∂ν

∣∣∣∣2 dσ = 0,

where F (x, u) :=
∫ u

0
f(x, t)dt. This concludes the proof. �

Next we prove Theorem 1.5.

Proof of Theorem 1.5. Let a, b ≥ 0, a+ b > 0, 1 < q < 5 and g(x, t) = tq. In
addition we suppose that µ ≤ 0 and Ω is strictly star-shaped. To conclude
the proof, we assume that there exists a solution u of (K1) to the contrary.
Then we have

(a+ b∥u∥2)∥u∥2 − µ

∫
Ω

uq+1dx−
∫
Ω

u6 = 0.

Combining this relation and (A.1), we get(
6

q + 1
− 1

)
µ

∫
Ω

uq+1dx = (a+ b∥u∥2)
∫
∂Ω

(x · ν)
∣∣∣∣∂u∂ν

∣∣∣∣2 dσ.
If µ < 0, the right hand side of the above equality is strictly less than 0. This
is a contradiction since x ·ν > 0 on ∂Ω. Now we assume µ = 0. Then we have
from the above equality,

∂u

∂ν
= 0 on ∂Ω.

Therefore we have

0 = −
∫
∂Ω

∂u

∂ν
dσ = −

∫
Ω

∆udx =
1

a+ b∥u∥2

∫
Ω

(uq + u5)dx.

But the right hand side of the above equality must be strictly positive. This
is a contradiction. Hence there exists no solution for (K1) with µ ≤ 0. This
is the desired conclusion. �

Lastly we prove Theorem 1.6. We refer to the argument in [7].

Proof of Theorem 1.6. Assume a > 0 and b ≥ 0 and let 1 < q ≤ 3 and
g(x, t) = tq. If u is a solution of (K1), there holds

(a+ b∥u∥2)∥u∥2 − µ

∫
Ω

uq+1dx−
∫
Ω

u6dx = 0.
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By this relation and (A.1), we have

µ

∫
Ω

uq+1dx = C(a+ b∥u∥2)
∫
∂Ω

(x · ν)
∣∣∣∣∂u∂ν

∣∣∣∣2 dσ,
where C > 0 is some constant depending only on q. Then by the assumption
that Ω is strictly star shaped and the embedding L2(∂Ω) ↪→ L1(∂Ω), we have

µ

∫
Ω

uq+1dx ≥ C(a+ b∥u∥2)
∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 dσ

≥ C(a+ b∥u∥2)
(∫

∂Ω

∂u

∂ν
dσ

)2

= C(a+ b∥u∥2)
(∫

Ω

|∆u|dx
)2

≥ C(a+ b∥u∥2)[u]23,w,

(A.2)

for some constant C > 0 which depends only on q and Ω, where [u]p,w :=

supλ>0[λ|{u > λ}|
1
p ] denotes the Lp weak norm of u and |A| denotes the

Lebesgue measure of the set A ⊂ R3. Further here, for the third inequality of
the above inequality we use the Green representation formula, the facts that
|x|−1 belongs to weak L3 space and the Young’s inequality for weak L3 norm
of convolution |x|−1 ∗ |∆u|. On the other hand, since (a + b∥u∥2)|∆u| ≥ u5,
we have

µ

∫
Ω

uq+1dx ≥ 1

a+ b∥u∥2

(∫
Ω

u5dx

)2

. (A.3)

Now define

r :=
6(q + 1)

q + 3
.

Then clearly q + 1 ≤ r and 3 < r < 5. Put 0 < γ < 1 so that

γ :=
3(5− r)

2r
.

Using r, a, γ > 0, (A.2) and (A.3) we get(∫
Ω

uq+1dx

) 1
q+1

≤ C

(∫
Ω

urdx

) 1
r

≤ C[u]γ3,w

(∫
Ω

u5dx

) 1−γ
5

≤ C

{
(a+ b∥u∥2)−1µ

∫
Ω

uq+1

} γ
2
{
(a+ b∥u∥2)µ

∫
Ω

uq+1

} 1−γ
10

,

for some constant C > 0 depending only on q and Ω. Since

γ

2
+

1− γ

10
=

1

q + 1
,
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we have

(a+ b∥u∥2)
γ
2 −

1−γ
10 ≤ Cµ.

for some constant C > 0 depending only on a, q and Ω. Since

γ

2
− 1− γ

10
> 0,

we finally have

µ ≥ µ0

for some constant µ0 > 0 which depends only on a, q and Ω. This proves
Theorem 1.6. �
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