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TODD GENERA OF COMPLEX TORUS MANIFOLDS

HIROAKI ISHIDA AND MIKIYA MASUDA

Abstract. In this paper, we prove that the Todd genus of a com-
pact complex manifold X of complex dimension n with vanishing
odd degree cohomology is one if the automorphism group of X
contains a compact n-dimensional torus Tn as a subgroup. This
implies that if a quasitoric manifold admits an invariant complex
structure, then it is equivariantly homeomorphic to a compact
smooth toric variety, which gives a negative answer to a problem
posed by Buchstaber-Panov.

1. Introduction

A torus manifold is a connected closed oriented smooth manifold
of even dimension, say 2n, endowed with an effective action of an
n-dimensional torus Tn having a fixed point. A typical example of a
torus manifold is a compact smooth toric variety which we call a toric
manifold in this paper. Every toric manifold is a complex manifold.
However, a torus manifold does not necessarily admit a complex
(even an almost complex) structure. For example, the 4-dimensional
sphere S4 with a natural T2-action is a torus manifold but admits no
almost complex structure.

On the other hand, there are infinitely many nontoric torus man-
ifolds of dimension 2n which admit Tn-invariant almost complex
structures when n ≥ 2. For instance, for any positive integer k, there
exists a torus manifold of dimension 4 with an invariant almost com-
plex structure whose Todd genus is equal to k ([10, Theorem 5.1])
while the Todd genus of a toric manifold is always one. One can
produce higher dimensional examples by taking products of those 4-
dimensional examples with toric manifolds. The cohomology rings
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of the torus manifolds in these examples are generated by its degree-
two part like toric manifolds.

In this paper, we consider a torus manifold with a Tn-invariant
(genuine) complex structure. We will call such a torus manifold a
complex torus manifold. The following is our main theorem.

Theorem 1.1. If a complex torus manifold has vanishing odd degree coho-
mology, then its Todd genus is equal to one.

Remark 1.2. If a closed smooth manifold M has vanishing odd degree
cohomology, then any smooth Tn-action on M has a fixed point (see [2,
Corollary 10.11 in p.164]). In particular, a connected closed oriented
smooth manifold M of dimension 2n with an effective Tn-action is
a torus manifold if M has vanishing odd degree cohomology. This
implies that Theorem 1.1 is equivalent to the statement in the abstract.

Other important examples of torus manifolds are 1quasitoric man-
ifolds introduced by M. W. Davis and T. Januskiewicz ([4]). A qua-
sitoric manifold of dimension 2n is a closed smooth manifold with
a locally standard Tn-action, whose orbit space is an n-dimensional
simple polytope. It is unknown whether any toric manifold is a qua-
sitoric manifold. However, if a toric manifold is projective, then it is
a quasitoric manifold because a projective toric manifold with the re-
stricted compact torus action admits a moment map which identifies
the orbit space with a simple polytope.

A. Kustarev ([9, Theorem 1]) gives a criterion of when a quasitoric
manifold admits an invariant almost complex structure. It also fol-
lows from his criterion that there are many nontoric quasitoric man-
ifolds which have invariant almost complex structures. However,
it has been unknown whether there is a quasitoric manifold which
admits an invariant complex structure, and V. M. Buchstaber and
T. E. Panov posed the following problem ([3, Problem 5.23]), which
motivated the study in this paper.

Problem 1.3 (Buchstaber-Panov). Find an example of nontoric quasitoric
manifold that admits an invariant complex structure.

As a consequence of Theorem 1.1, we obtain the following which
gives a negative answer to Problem 1.3.

Theorem 1.4. If a quasitoric manifold admits an invariant complex struc-
ture, then it is equivariantly homeomorphic to a toric manifold.

1Davis-Januszkiewicz [4] uses the terminology toric manifold but it was already
used in algebraic geometry as the meaning of (compact) smooth toric variety, so
Buchstaber-Panov [3] started using the word quasitoric manifold.



TODD GENERA OF COMPLEX TORUS MANIFOLDS 3

This paper is organized as follows. In Section 2, we study simply
connected compact complex surfaces with torus actions. In Section
3, we review the notion of multi-fan and recall a result on Todd
genus. In Section 4, we define a map associated with the multi-
fan of a complex torus manifold X and give a criterion of when the
Todd genus of X is one in terms of the map. Theorems 1.1 and
1.4 are proved in Sections 5 and 6 respectively. Throughout this
paper, all cohomology rings and homology groups are taken with
Z-coefficients.

While preparing this paper, the first author and Yael Karshon
proved that a complex torus manifold is equivariantly biholomor-
phic to a toric manifold ([7]). Although Theorem 1.1 is contained in
the result, the argument in this paper is completely different from
that in [7] and we believe that this paper is worth publishing.

2. Simply connected complex surfaces with torus actions

We first recall two results on simply connected 4-manifolds.

Theorem 2.1 ([12]). If a simply connected closed smooth manifold of di-
mension 4 admits an effective smooth action of T2, then it is diffeomorphic
to a connected sum of copies of CP2, CP2 (CP2 with reversed orientation)
and S2 × S2.

Theorem 2.2 ([5]). If a simply connected projective complex surface is
decomposed into Y1#Y2 as oriented smooth manifolds, then either Y1 or Y2
has a negative definite cup-product form.

Let X be a simply connected compact complex surface whose au-
tomorphism group contains T2 as a subgroup. By Theorem 2.1

(2.1) X � kCP2#ℓCP2#m(S2 × S2), k, ℓ,m ≥ 0

as oriented smooth manifolds. Therefore, the Euler characteristic
χ(X) and the signature σ(X) of X are respectively given by

χ(X) = k + ℓ + 2m + 2 and σ(X) = k − ℓ
and hence the Todd genus Todd(X) of X is given by

(2.2) Todd(X) =
1
4

(χ(X) + σ(X)) =
1
2

(k +m + 1).

The following proposition is a key step toward Theorem 1.1.

Proposition 2.3. Let X be as above. Then Todd(X) = 1.



4 H. ISHIDA AND M. MASUDA

Proof. Since X is simply connected, the first betti number of X is 0,
in particular, even. Thus, X is a deformation of an algebraic surface
([8, Theorem 25]). Since any algebraic surface is projective (see [1,
Chapter IV, Corollary 5.6]), we can apply Theorem 2.2 to our X.

Unless (k,m) = (1, 0) or (0, 1), it follows from (2.1) that X can be
decomposed into Y1#Y2 as oriented smooth manifolds, where

Y1 = CP2, Y2 = (k − 1)CP2#ℓCP2#m(S2 × S2) if k ≥ 2,

Y1 = S2 × S2, Y2 = kCP2#ℓCP2#(m − 1)(S2 × S2) if m ≥ 2,

Y1 = CP2#ℓCP2, Y2 = S2 × S2 if (k,m) = (1, 1).

In any case, neither of Y1 and Y2 has a negative cup-product form
and this contradicts Theorem 2.2. Therefore, (k,m) = (1, 0) or (0, 1)
and hence Todd(X) = 1 by (2.2). �

3. Torus manifolds and multi-fans

In this section, we review the notion of multi-fans introduced in
[6] and [10] and recall a result on Todd genus.

A torus manifold X of dimension 2n is a connected closed oriented
manifold endowed with an effective action of Tn having a fixed point.
In this paper, we are concerned with the case when X has a complex
structure invariant under the action. We will call such a torus mani-
fold a complex torus manifold.

Throughout this section, X will denote a complex torus manifold
of complex dimension n unless otherwise stated. We define a combi-
natorial object ∆X := (ΣX,CX,wX) called the multi-fan of X. A charac-
teristic submanifold of X is a connected complex codimension 1 holo-
morphic submanifold of X fixed pointwise by a circle subgroup of Tn.
Characteristic submanifolds are Tn-invariant and intersect transver-
sally. Since X is compact, there are only finitely many characteristic
submanifolds, denoted X1, . . . ,Xm. We set

ΣX :=

I ∈ {1, 2, . . . ,m} | XI :=
∩
i∈I

Xi , ∅
 ,

which is an abstract simplicial complex of dimension n − 1.
Let S1 be the unit circle group of complex numbers and Ti the circle

subgroup of Tn which fixes Xi pointwise. We take the isomorphism
λi : S1 → Ti ⊂ Tn such that

(3.1) λi(g)∗(ξ) = gξ for ∀g ∈ S1 and ∀ξ ∈ TX|Xi/TXi
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where λi(g)∗ denotes the differential of λi(g) and the right hand side
of (3.1) above is the scalar multiplication with the complex number g
on the normal bundle TX|Xi/TXi of Xi. We regard λi as an element of
the Lie algebra Lie Tn of Tn through the differential and assign a cone

(3.2) CX(I) := pos(λi | i ∈ I) ⊂ Lie Tn

to each simplex I ∈ ΣX, where pos(A) denotes the positive hull
spanned by elements in the set A. This defines a map CX from
ΣX to the set of cones in Lie Tn.

We denote the set of (n − 1)-dimensional simplices in ΣX by Σ(n)
X .

For I ∈ Σ(n), XI is a subset of the Tn-fixed point set of X. The weight
function wX : Σ(n)

X → Z>0 is given by

wX(I) := #XI

where #A denotes the cardinality of the finite set A.
The triple ∆X := (ΣX,CX,wX) is called the multi-fan of X. The Todd

genus Todd(X) of X can be read from the multi-fan ∆X as follows.

Theorem 3.1 ([10]). Let v be an arbitrary vector in Lie Tn which is not
contained in CX(J) for any J ∈ ΣX\Σ(n)

X . Then

Todd(X) =
∑

wX(I)

where the summation runs over all I ∈ Σ(n)
X such that CX(I) contains v.

The following corollary follows immediately from Theorem 3.1.

Corollary 3.2. Todd(X) = 1 if and only if the pair (ΣX,CX) forms an
ordinary complete nonsingular fan and wX(I) = 1 for every I ∈ Σ(n)

X .

Suppose XJ is connected for every J ∈ ΣX. Then XJ is a complex
codimension #J holomorphic submanifold of X having a Tn-fixed
point. Moreover, the induced action of the quotient torus Tn/TJ on
XJ is effective and preserves the complex structure of XJ, where TJ is
the #J-dimensional subtorus of Tn generated by T j for j ∈ J. Therefore,
XJ is a complex torus manifold of complex dimension n− #J with the
effective action of the quotient torus Tn/TJ.

In this case, the multi-fan ∆XJ = (ΣXJ ,CXJ ,wXJ ) of XJ for J ∈ Σ can
be obtained from the multi-fan ∆X of X as discussed in [6], which we
shall review. We note that XJ ∩ Xi is non-empty if and only if J ∪ {i}
is a simplex in ΣX and each characteristic submanifold of XJ can be
written as the non-empty intersection XJ ∩ Xi. Hence, the simplicial
complex ΣXJ coincides with the link link(J;ΣX) of J in ΣX and

CXJ (I) = pos(λi | i ∈ I)
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for I ∈ link(J;ΣX), where λi denotes the image of λi by the quotient
map Lie Tn → Lie Tn/TJ. The weight function wXJ is the constant
function 1.

4. Maps associated with multi-fans

Let X be a complex torus manifold of complex dimension n and
∆X = (ΣX,CX,wX) the multi-fan of X. Throughout this section, we
assume that XJ is connected for every J ∈ ΣX. We will define a
continuous map fX from the geometric realization |ΣX| of ΣX to the
unit sphere Sn−1 of the vector space Lie Tn in which the cones CX(I)
for I ∈ ΣX sit, and give a criterion of when the Todd genus of X is
equal to 1 in terms of the map fX.

We set

σI :=

∑
i∈I

ai ei |
∑
i∈I

ai = 1, ai ≥ 0

 ⊂ Rm for I ∈ ΣX,

where ei is the i-th vector in the standard basis of Rm. The geometric
realization |ΣX| of ΣX is given by

|ΣX| =
∪
I∈ΣX

σI.

Recall that the homomorphisms λi : S1 → Tn for i = 1, . . . ,m defined
in Section 3 are regarded as elements in Lie Tn through the differential.
We take an inner product on Lie Tn and denote the length of an
element v ∈ Lie Tn by |v|. We define a map fX : |ΣX| → Sn−1, where
Sn−1 is the unit sphere of Lie Tn, by

(4.1) fX|σI

∑
i∈I

ai ei

 = ∑i∈I aiλi

|∑i∈I aiλi|
.

Clearly, fX is a closed continuous map.

Lemma 4.1. The map fX : |ΣX| → Sn−1 is a homeomorphism if and only if
Todd(X) = 1.

Proof. We note that XI is one point for any I ∈ Σ(n)
X because XI is

connected by assumption and of codimension n in X. Therefore,
wX(I) = 1 for any I ∈ Σ(n)

X and this together with Theorem 3.1 tells
us that the Todd genus Todd(X) coincides with the number of cones
CX(I) containing the vector v ∈ Lie Tn in Theorem 3.1.

The above observation implies that the cones CX(I) for I ∈ ΣX
do not overlap and form an ordinary complete fan in Lie Tn if and
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only if Todd(X) = 1 and this is equivalent to the map fX being a
homeomorphism, proving the lemma. �

For each characteristic submanifold Xi, we can also define a map
fXi : |ΣXi | → Sn−2, where Sn−2 is the unit sphere in Lie Tn/Ti � (Lie Ti)⊥,
where (Lie Ti)⊥ denotes the orthogonal complement of a vector sub-
space Lie Ti in Lie Tn.

Lemma 4.2. If fXi : |ΣXi | → Sn−2 is a homeomorphism, then fX|star({i};ΣX) :
star({i};ΣX)→ Sn−1 is a homeomorphism onto its image, where star({i};ΣX)
denotes the open star of {i} in ΣX.

Proof. It suffices to show the injectivity of fX|star({i};ΣX) because fX is
closed and continuous. Let pi : Lie Tn → (Lie Ti)⊥ be the orthogonal
projection. Through pi, we identify Lie Tn/Ti with (Lie Ti)⊥. Recall
that ΣXi = link({i};ΣX). For each vertex j of link({i};ΣX), we express
λ j as

λ j = pi(λ j) + ci, jλi, ci, j ∈ R.
By the definitions of link({i};ΣX) and star({i};ΣX), we can express an
element x ∈ star({i};ΣX) as

(4.2) x = (1 − t) ei +ty, with y ∈ | link({i};ΣX)|, 0 ≤ t < 1.

Suppose y ∈ σJ ⊂ | link({i};ΣX)| and write

y =
∑
j∈J

a j e j,
∑
j∈J

a j = 1, a j ≥ 0.

Then, it follows from (4.1) that

fX(x) =
(1 − t)λi + t

∑
j∈J a jλ j

|(1 − t)λi + t
∑

j∈J a jλ j|

=
(1 − t)λi + t

∑
j∈J a j(pi(λ j) + ci, jλi)

|(1 − t)λi + t
∑

j∈J a j(pi(λ j) + ci, jλi)|

= g(t, y) fXi(y) + h(t, y)
λi

|λi|
,

(4.3)

where

(4.4) g(t, y) :=
t|∑ j∈J a jpi(λ j)|

|(1 − t)λi + t
∑

j∈J a j(pi(λ j) + ci, jλi)|
and

h(t, y) :=
(1 − t + t

∑
j∈J a jci, j)|λi|

|(1 − t)λi + t
∑

j∈J a j(pi(λ j) + ci, jλi)|
.
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Since | fX(x)| = | fXi(y)| = 1 and fXi(y) is perpendicular to λi/|λi|, it
follows from (4.3) that

(4.5) g2(t, y) + h2(t, y) = 1.

Take another point x′ ∈ star({i},ΣX) and write

x′ = (1 − t) ei +t′y′, with y′ ∈ | link({i};ΣX)|, 0 ≤ t′ < 1

similarly to (4.2). Since

fX(x′) = g(t′, y′) fXi(y′) + h(t′, y′)
λi

|λi|
,

we have fX(x) = fX(x′) if and only if

(4.6) g(t, y) fXi(y) = g(t′, y′) fXi(y′) and h(t, y) = h(t′, y′).

Both g(t, y) and g(t′, y′) are non-negative by (4.4), so it follows from
(4.5) and (4.6) that if fX(x) = fX(x′), then

(4.7) g(t, y) = g(t′, y′) and fXi(y) = fXi(y′).

The latter identity in (4.7) above implies y = y′ since fXi is a home-
omorphism by assumption. Therefore it follows from (4.6) and (4.7)
that

g(t, y) = g(t′, y) and h(t, y) = h(t′, y).
This together with (4.3) shows that

(1 − t)λi + t
∑
j∈J

a jλ j = (1 − t′)λi + t′
∑
j∈J

a jλ j.

Here λi and
∑

j∈J a jλ j are linearly independent, so we conclude t = t′.
It follows that fX|star({i};ΣX) is injective, which implies the lemma. �

We have the following corollary.

Corollary 4.3. If fXi : |ΣXi | → Sn−2 is a homeomorphism for all i, then
fX : |ΣX| → Sn−1 is a covering map, and hence if |ΣX| is connected and
n − 1 ≥ 2 in addition, then fX is a homeomorphism.

5. Torus manifolds with vanishing odd degree cohomology

In this section, we prove Theorem 1.1 in the Introduction.
The Tn-action on a torus manifold X of dimension 2n is said to

be locally standard if the Tn-action on X locally looks like a faithful
representation of Tn, to be more precise, any point of X has an invari-
ant open neighborhood equivariantly diffeomorphic to an invariant
open set of a faithful representation space of Tn. The orbit space X/Tn

is a manifold with corners if the Tn-action on X is locally standard. A
manifold with corners Q is called face-acyclic if every face of Q (even
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Q itself) is acyclic. A face-acyclic manifold with corners is called a
homology polytope if any intersection of facets of Q is connected unless
empty. The combinatorial structure of X/Tn and the topology of X
are deeply related as is shown in the following theorem.

Theorem 5.1 ([11]). Let X be a torus manifold of dimension 2n.
(1) Hodd(X) = 0 if and only if the Tn-action on X is locally standard

and X/Tn is face-acyclic.
(2) H∗(X) is generated by its degree-two part as a ring if and only if the

Tn-action on X is locally standard and X/Tn is a homology polytope.

Suppose that X is a torus manifold of dimension 2n with vanishing
odd degree cohomology. Then X/Tn = Q is a manifold with corners
and face-acyclic. Let π : X → X/Tn = Q be the quotient map and
let Q1, . . . ,Qm be the facets of Q. Then π−1(Q1), . . . , π−1(Qm) are the
characteristic submanifolds of X, denoted X1, . . . ,Xm before. If Q is a
homology polytope, i.e. any intersection of facets of Q is connected
unless empty (this is equivalent to any intersection of characteristic
submanifolds of X being connected unless empty), then the geomet-
ric realization |ΣX| of the simplicial complex ΣX is a homology sphere
of dimension n − 1 (see [11, Lemma 8.2]), in particular, connected
when n ≥ 2. Unless Q is a homology polytope, intersections of facets
are not necessarily connected. However, we can change Q into a
homology polytope by cutting Q along faces of Q. This operation
corresponds to blowing-up along connected components of intersec-
tions of characteristic submanifolds of X equivariantly. We refer the
reader to [11] for the details.

The results in Section 2 required the simply connectedness of a
complex surface. Here is a criterion of the simply connectedness of
a torus manifold in terms of its orbit space.

Lemma 5.2. Suppose that the Tn-action on a torus manifold X is locally
standard. Then X is simply connected if and only if the orbit space X/Tn is
simply connected.

Proof. Since the group Tn is connected, the “only if” part in the lemma
follows from [2, Corollary 6.3 in p.91].

We shall prove the “if” part. Suppose that X/Tn is simply con-
nected. Since each characteristic submanifold Xi of X is of real codi-
mension two, the homomorphism

(5.1) π1(X\ ∪i Xi)→ π1(X)

induced by the inclusion map from X\ ∪i Xi to X is surjective. Here,
the Tn-action on X\ ∪i Xi is free since the Tn-action on X is locally
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standard, so that the quotient map from X\∪i Xi to (X\∪i Xi)/Tn gives
a fiber bundle with fiber Tn. The orbit space (X\ ∪i Xi)/Tn is simply
connected because X/Tn ia a manifold with corners, (X\ ∪i Xi)/Tn is
the interior of X/Tn and X/Tn is simply connected by assumption.
Therefore the inclusion map from a free Tn-orbit to X\ ∪i Xi induces
an isomorphism on their fundamental groups. But any free Tn-orbit
shrinks to a fixed point in X, so the epimorphism in (5.1) must be
trivial and hence X is simply connected. �

Now, we are in a position to prove the following main theorem
stated in the Introduction.

Theorem 5.3. If a complex torus manifold X has vanishing odd degree
cohomology, then the Todd genus of X is 1.

Proof. Let n be the complex dimension of X as usual. Since Hodd(X) =
0, the orbit space X/Tn is face-acyclic by Theorem 5.1. As remarked
after Theorem 5.1, one can change X into a complex torus mani-
fold whose orbit space is a homology polytope by blowing-up X
equivariantly. Since Todd genus is a birational invariant, it remains
unchanged under blowing-up. Therefore we may assume that the
orbit space of our X is a homology polytope, so that any intersection
of characteristic submanifolds of X is connected unless empty and
|ΣX| is a homology sphere of dimension n − 1. Since the orbit space
of Xi is a facet of X/Tn, it is also a homology polytope so that any in-
tersection of characteristic submanifolds of Xi (viewed as a complex
torus manifold) is also connected unless empty and |ΣXi | is a homol-
ogy sphere of dimension n− 2. Therefore, the results in Section 4 are
applicable to X and Xi’s.

We shall prove the theorem by induction on the complex dimension
n of X. If n = 1, then X isCP1 and hence Todd(X) = 1. When n = 2, the
orbit space X/T2 is contractible because X/T2 is acyclic by Theorem
5.1 and the dimension of X/T2 is 2. Therefore, X is simply connected
by Lemma 5.2 and Todd(X) = 1 by Proposition 2.3.

Assume that n ≥ 3 and the theorem holds when the complex
dimension is equal to n−1. Then, Todd(Xi) = 1 for any Xi by induction
assumption and hence fXi : |ΣXi | → Sn−2 is a homeomorphism by
Lemma 4.1. Since |ΣX| is a homology sphere of dimension n− 1(≥ 2),
|ΣX| is connected and hence fX : |ΣX| → Sn−1 is a homeomorphism
by Corollary 4.3. It follows from Lemma 4.1 that Todd(X) = 1. This
completes the induction step and the theorem is proved. �
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6. Proof of Theorem 1.4

A quasitoric manifold X of dimension 2n is a smooth closed man-
ifold endowed with a locally standard Tn-action, whose orbit space
is a simple polytope Q of dimension n. Clearly, X is a torus man-
ifold. The characteristic submanifolds X1, . . . ,Xm of X bijectively
correspond to the facets Q1, . . . ,Qm of Q through the quotient map
π : X → Q. Therefore, for I ⊂ {1, . . . ,m}, XI = ∩i∈IXi is non-empty if
and only if QI := ∩i∈IQi is non-empty; so the simplicial complex

ΣX = {I ⊂ {1, . . . ,m} | XI , ∅}
introduced in Section 3 is isomorphic to the boundary complex of
the simplicial polytope dual to Q. As before, let Ti be the circle
subgroup of Tn which fixes Xi pointwise and let λi : S1 → Ti ⊂ Tn be
an isomorphism. There are two choices of λi for each i.

One can recover X from the data (Q, {λi}mi=1) up to equivariant home-
omorphism as follows. Any codimension k face F of Q is written as
QI for a unique I ∈ ΣX with cardinality k and we denote the subgroup
TI by TF. For a point p ∈ Q, we denote by F(p) the face containing p
in its relative interior. Set

X(Q, {λi}mi=1) := Tn ×Q/ ∼,
where (t, p) ∼ (s, q) if and only if p = q and ts−1 ∈ TF(p). Then X and
X(Q, {λi}mi=1) are known to be equivariantly homeomorphic ([4]).

Suppose that our quasitoric manifold X admits an invariant com-
plex structure. Then, the isomorphism λi is unambiguously deter-
mined by requiring the identity (3.1), that is

λi(g)∗(ξ) = gξ, ∀g ∈ S1 and ∀ξ ∈ TX|Xi/TXi.

The simplicial complex ΣX and the elements λi’s are used to define
the multi-fan of X. But since the Todd genus of X is one by Theo-
rem 5.3, the multi-fan of X is an ordinary complete non-singular fan
by Corollary 3.2 and hence it is the fan of a toric manifold. Finally, we
note that sinceΣX is the boundary complex of the simplicial polytope
dual to the simple polytope Q, it determines Q as a manifold with
corners up to homeomorphism. This implies Theorem 1.4 because
the equivariant homeomorphism type of X is determined by Q and
the elements λi’s as remarked above.

Acknowledgment. The authors thank Masaaki Ue and Yoshinori
Namikawa for their helpful comments on the automorphism groups
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