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A Payne-Rayner type inequality for the Robin
problem on arbitrary minimal surfaces in RN

Futoshi Takahashi and Akinobu Uegaki

Abstract. We prove a Payne-Rayner type inequality for the first eigenfunction
of the Laplacian with Robin boundary condition on any compact minimal
surface with boundary in RN . We emphasize that no topological condition is
necessary on the boundary.

Mathematics Subject Classification (2000). Primary 35P15; Secondary 35J25.

Keywords. Robin problem, Payne-Rayner type inequality.

1. Introduction

Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω, and let λ1(Ω) and ψ
denote the first eigenvalue and the corresponding first eigenfunction, respectively,
to the eigenvalue problem {

−∆u = λu in Ω,

u = 0 on ∂Ω.

In [7], Payne and Rayner proved the following inequality
(∫

Ω

ψ2dx

)
≤ λ1(Ω)

4π

(∫

Ω

ψ dx

)2

.

A remarkable point of this inequality is that it gives an exact lower-bound of the
first eigenvalue by means of some integral-norms of the first eigenfunction, on one
hand, and on the other hand, it also says that the first eigenfunction satisfies a
reverse Hölder type inequality. Actually, the L2 norm of ψ is bounded by the L1

norm of ψ.
In this paper, we extend the above result, known to hold on a flat domain

with the Dirichlet boundary condition, to a more general setting. Namely, let Σ be
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a compact minimal surface in RN (N ≥ 3) with smooth boundary ∂Σ. We consider
the following eigenvalue problem with the Robin boundary condition:{

−∆Σu = λu in Σ,
∂u
∂ν + βu = 0 on ∂Σ,

(1.1)

where ∆Σ is the Laplace-Beltrami operator on Σ, β is a positive constant and ν is
the outer unit normal to ∂Σ. Let λβ

1 (Σ) denote the first eigenvalue of (1.1), given
by the variational formula

λβ
1 (Σ) = min

u∈H1(Σ)

∫
Σ
|∇Σu|2dH2 + β

∫
∂Σ

u2dH1

∫
Σ

u2dH2
,

where ∇Σ is the gradient operator on Σ and Hk denotes the k-dimensional Haus-
dorff measure in RN . It is well known that λβ

1 (Σ) is simple and isolated, and the
corresponding eigenfunction ψβ is smooth, positive, and unique up to multiplica-
tion by constants. (see, for example, [3]).

Now, let us consider the auxiliary problem{
∆Σf = 2 in Σ,

f = 0 on ∂Σ.
(1.2)

Our main result is the following Payne-Rayner type inequality.

Theorem 1.1. Let λβ
1 (Σ) be the first eigenvalue of (1.1) and ψβ be the eigenfunction

corresponding to λβ
1 (Σ). Then

∫

Σ

ψ2
β dH2 ≤ λβ

1 (Σ)√
2π

(∫

Σ

ψβ dH2

)2

+
1
2

∫

∂Σ

ψ2
β

(
∂fΣ

∂ν

)
dH1 +

1√
2π
H1(∂Σ)2(M2 −m2

∗)

holds, where M = max∂Σ ψβ, m∗ = minΣ∪∂Σ ψβ, and fΣ is the unique solution to
the problem (1.2)

As for the Dirichlet eigenvalue problem{
−∆Σu = λu in Σ,

u = 0 on ∂Σ,
(1.3)

the same proof of Theorem 1.1 works well and we obtain

Theorem 1.2. Let λD
1 (Σ) be the first eigenvalue of (1.3) and ψD be the eigenfunc-

tion corresponding to λD
1 (Σ). Then we have

∫

Σ

ψ2
D dH2 ≤ λD

1 (Σ)
2
√

2π

(∫

Σ

ψD dH2

)2

.

Under the assumption that the boundary ∂Σ is weakly connected (see Li-
Schoen-Yau [6]), Wang and Xia [8] recently proved the sharp inequality

∫

Σ

ψ2
D dH2 ≤ λD

1 (Σ)
4π

(∫

Σ

ψD dH2

)2
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for the first eigenfunction to (1.3), with the equality holds if and only if Σ is a flat
disc on an affine 2-plane in RN .

Our method of proof is strongly related to that of [8], which in turn goes back
to the work [7]. However, in our case, we cannot apply the sharp isoperimetric
inequality by Li-Schoen-Yau [6] directly to level sets of the first eigenfunction,
since we put no topological assumptions on the boundary. Instead, we use a weaker
version of the isoperimetric inequality due to A. Stone ([1]: Lemma 4.3):

Let Σ be a compact minimal surface in RN with boundary ∂Σ. Let A denote
the area of Σ and L the length of ∂Σ. Then the inequality

2
√

2πA ≤ L2 (1.4)

holds.
Though the constant 2

√
2π in front of A is not the best possible value 4π, this

weaker inequality is valid for any compact minimal surface in RN with boundary.
Thanks to this, we do not need any topological assumption such as weak connect-
edness on the boundary in Theorem 1.1 and Theorem 1.2.

In case Σ = Ω ⊂ R2 is a bounded smooth domain in (1.1), we can appeal to
the classical sharp isoperimetric inequality 4πA ≤ L2 on the plane, then we obtain

Theorem 1.3. Let Σ = Ω is a smooth bounded domain in R2. Then we have
∫

Ω

ψ2
β dx ≤ λβ

1 (Ω)
2π

(∫

Ω

ψβ dx

)2

+
1
2

∫

∂Ω

ψ2
β

(
∂fΩ

∂ν

)
dH1 +

1
2π
H1(∂Σ)2(M2 −m2

∗)

We do not repeat the proof of Theorem 1.2 and Theorem 1.3 here, since it
needs only a trivial change in the proof of Theorem 1.1.

2. Proof of Theorem 1.1

First, we set

U(t) = {x ∈ Σ : ψβ(x) > t},
S(t) = Σ ∩ ∂U(t),

Γ(t) = ∂Σ ∩ ∂U(t)

for t > 0. Then ∂U(t) = S(t) ∪ Γ(t) is a disjoint union. Since ψβ is smooth up
to the boundary ([5]), Sard’s lemma implies that |∇Σψβ | 6= 0 on S(t), S(t) is a
smooth hypersuraface and can be written as S(t) = {x ∈ Σ : ψβ(x) = t} for a.e.
t > 0. Recall M = max∂Σ ψβ and m∗ = minΣ∪∂Σ ψβ . We claim that min∂Σ ψβ > 0.
Indeed, if ψβ(x0) = 0 for some x0 ∈ ∂Σ, then the boundary condition implies that
∂ψβ

∂ν (x0) = 0 also holds. On the other hand, by the positivity of ψβ and Hopf’s
lemma, we have ∂ψβ

∂ν (x0) < 0, which is a contradiction. Since ψβ is positive on Σ,
the above claim yields m∗ > 0, and then U(t) = Σ for any 0 < t < m∗. Also we
note that Γ(t) = φ if t > M .
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As in the proof of [2], [3], [8], our main tool is the following co-area formula,
asserting that for every w ∈ L1(Σ), it holds

∫

U(t)

wdH2 =
∫ ∞

t

∫

S(τ)

w

|∇Σψβ |dH
1dτ,

d

dt

∫

U(t)

wdH2 = −
∫

S(t)

w

|∇Σψβ |dH
1.

See, for instance, [4]. Note that in the right hand side, the integral over Γ(t) does
not appear.

We define the following two functions g and h as

g(t) =
∫

U(t)

ψβ dH2 =
∫ ∞

t

∫

S(τ)

ψβ

|∇Σψβ |dH
1dτ,

h(t) = −
∫

U(t)

〈
∇Σ

(
1
2
ψ2

β

)
,∇Σf

〉
dH2

= −
∫ ∞

t

∫

S(τ)

ψβ 〈∇Σψβ ,∇Σf〉
|∇Σψβ | dH1ds,

where f is the unique solution of the problem (1.2).
Differentiating g and h, we have

g′(t) = −t

∫

S(t)

1
|∇Σψβ | dH1, (2.1)

h′(t) = t

∫

S(t)

〈∇Σψβ ,∇Σf〉
|∇Σψβ | dH1 = −t

∫

S(t)

〈∇Σf, ν〉 dH1

= −t

∫

S(t)

∂f

∂ν
dH1 (2.2)

for a.e. t > 0, since − ∇Σψβ

|∇Σψβ |

∣∣∣
S(t)

is outward unit normal vector field ν of S(t).

On the other hand, integrating both sides of −∆Σψβ = λβ
1 (Σ)ψβ over U(t),

we have

λβ
1 (Σ)g(t) = λβ

1 (Σ)
∫

U(t)

ψβdH2 = −
∫

U(t)

∆ΣψβdH2

=
∫

S(t)

|∇Σψβ | dH1 −
∫

Γ(t)

∂ψβ

∂ν
dH1

=
∫

S(t)

|∇Σψβ | dH1 + β

∫

Γ(t)

ψβdH1

≥
∫

S(t)

|∇Σψβ | dH1, (2.3)

since −∂ψβ

∂ν = βψβ > 0 on Γ(t) ⊂ ∂Σ.
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Also, we see

2H2(U(t)) =
∫

U(t)

2dH2 =
∫

U(t)

∆fdH2 =
∫

∂U(t)

∂f

∂ν
dH1

=
∫

S(t)

∂f

∂ν
dH1 +

∫

Γ(t)

∂f

∂ν
dH1

≥
∫

S(t)

∂f

∂ν
dH1 =

−1
t

h′(t) (2.4)

by (2.2). The last inequality follows by the fact ∂f
∂ν > 0 on Γ(t) ⊂ ∂Σ, which in

turn is assured by the Hopf lemma.
From the weak isoperimetric inequality (1.4) applied to U(t), we have

2
√

2πH2(U(t)) ≤ H1(∂U(t))2

≤ (H1(S(t)) +H1(Γ(t))
)2

≤ 2H1(S(t))2 + 2H1(Γ(t))2. (2.5)

Now, Schwarz’s inequality, (2.1) and (2.3) imply

H1(S(t))2 =

(∫

S(t)

1 dH1

)2

≤
(∫

S(t)

|∇Σψβ | dH1

)(∫

S(t)

1
|∇Σψβ | dH1

)

≤ λβ
1 (Σ)g(t) ·

(
−g′(t)

t

)
.

Therefore, by (2.4) and (2.5), we obtain

−
√

2π

t
h′(t) ≤ 2

√
2πH2(U(t)) ≤ 2λβ

1 (Σ)g(t) ·
(
−g′(t)

t

)
+ 2H1(Γ(t))2,

or equivalently,

d

dt

{
λβ

1 (Σ)g(t)2 −
√

2πh(t)−
∫ t

0

2τH1(Γ(τ))2dτ

}
≤ 0. (2.6)

for a.e t > 0. Note that the function l(t) = 2tH1(Γ(t))2 is integrable on the interval
t ∈ (0, ‖ψβ‖L∞(∂Σ)), and thus l(t) = d

dt

∫ t

0
l(τ)dτ .

Fix ε > 0 so small such that ε < m∗. Integrating (2.6) from mε = m∗ − ε to
t, we have

λβ
1 (Σ)g(t)2−

√
2πh(t)−

∫ t

0

2τH1(Γ(τ))2dτ ≤ λβ
1 (Σ)g(mε)2−

√
2πh(mε)−

∫ mε

0

2τH1(Γ(τ))2dτ,

which implies

√
2πh(mε) ≤ λβ

1 (Σ)g(mε)2 − λβ
1 (Σ)g(t)2 +

√
2πh(t) +

∫ t

mε

2τH1(Γ(τ))2dτ.
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We easily see that
∫ t

mε

2τH1(Γ(τ))2dτ ≤ H1(∂Σ)2
∫ M

mε

2τdτ = H1(∂Σ)2
(
M2 −m2

ε

)

for any t > mε. Letting t → +∞, and noting that U(t) is empty for sufficiently
large t, we obtain

h(mε) ≤ λβ
1 (Σ)√
2π

g2(mε) +
1√
2π
H1(∂Σ)2

(
M2 −m2

ε

)
.

g(mε) and h(mε) are given by

g(mε) =
∫

Σ

ψβ dH2,

h(mε) = −
∫

Σ

〈
∇Σ

(
1
2
ψ2

β

)
,∇Σf

〉
dH2

=
∫

Σ

1
2
ψ2

β∆f dH2 − 1
2

∫

∂Σ

ψ2
β

∂f

∂ν
dH1.

Since ∆Σf = 2 by (1.2), we have
∫

Σ

ψ2
β dH2 − 1

2

∫

∂Σ

ψ2
β

∂f

∂ν
dH1 ≤ λβ

1 (Σ)√
2π

(∫

Σ

ψβ dH2

)2

+
1√
2π
H1(∂Σ)2

(
M2 −m2

ε

)
.

Finally letting ε → 0, we obtain the result.

Remark 2.1. In the case that Ω = BR ⊂ R2 is a disc of radius R, then the inequality
in Theorem 1.3 becomes the equality

∫

BR

ψ2
β dx =

λβ
1 (Ω)
4π

(∫

BR

ψβ dx

)2

+
R

2

∫

∂Ω

ψ2
β dH1. (2.7)

This is because, first, ψβ is positive, radial and decreasing in the radial direc-
tion on BR ([3]:Proposition 2.6). Therefore ψβ ≡ c > 0 on ∂BR and U(c) = BR,
∂U(t) = S(t) for any t > c. Also |∇ψβ | is constant on S(t). Secondly, we can use
the sharp isoperimetric inequality as the equality 4πH2(U(t)) = H1(S(t))2 in (2.5)
in this case. Finally, the unique solution fBR of (1.2) is fBR = 1

2 |x|2 − 1
2R2. By

these reasons, we see all inequalities in the proof of Theorem 1.1 are equalities and
we obtain

d

dt

{
λβ

1 (BR)g(t)2 − 4πh(t)
}

= 0

for a.e. t > c, instead of (2.6). Integrating this from t = c to t, and letting t →∞,
we obtain (2.7).
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