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Abstract
We consider the eigenvalue problem

—Av =2\ <copu€_1 + 5) v in Q,
v=20 on 0f),
|l pee (@) = 1
where Q@ ¢ RY(N > 5) is a smooth bounded domain, cg = N(N — 2), p =

(N +2)/(N — 2) is the critical Sobolev exponent and £ > 0 is a small parameter.
Here u, is a positive solution of

—Au=couP +euin Q, wulgg =0
with the property that

fQ |Vu.|?dx

(Jo | 1dz) 757

*The author acknowledges the support by JSPS Grant-in-Aid for Scientific Research,
No. 20540216.

— Sy ase — 0,




where Sy is the best constant for the Sobolev inequality. In this paper, we show
several asymptotic estimates for the eigenvalues \; . and corresponding eigenfunc-
tions v fori =1,2,--- N +1, N + 2.

1 Introduction
Consider the problem

—Au = couP + cu  in €,
(P)qu>0 in €,
u=>0 on 0f)

where Q@ C RY(N > 4) is a smooth bounded domain, ¢ = N(N — 2),
p = (N +2)/(N — 2) is the critical Sobolev exponent, and £ > 0 is a small
parameter. In the following, u. will denote a positive solution of (F.) with

the property
Jo IVu.Pdx

Ug p+1ldy p%
o luel

— Sy ase — 0, (1.1)

where Sy is the best Sobolev constant in RY. By a result of Han [4] and Rey
5], solution sequence {u.} satisfying (1.1) blows up at an interior point z, €
€2 in the sense that ||u.|| =) — 00 as € — 0 and the maximum point x. of
ue accumulates to zq. Moreover, x has to be a critical point of the (positive)

Robin function R defined as R(z) = lim,_, [mu — 2PN — G(z, 2)|,

where oy is the volume of the unit sphere in RY and G(z,z) is Green’s
function of —A with the Dirichlet boundary condition.

We are interested in some spectral properties of this blowing-up solution
ue to (P:). For this purpose, let us consider the eigenvalue problem

—Av = A(copul™' +e)v  inQ,
v=>0 on 012, (1.2)
||UHLoo(Q) = 1

In the following, the symbol ||-|| will denote ||-|| (). By a general theory, we

know that there exists a countable sequence of eigenvalues A\j . < Ag < -+ <
Aie < -+ — +o00 and corresponding eignefunctions vy ., Vo, -+ , Vg, - - - With



the orthogonal relation

/ (copul™ + &) vicvjdr =0, (i # ). (1.3)
Q

To state the results, we introduce the scaled eigenfunctions
~ Yy _
Uic(y) = vie <ﬁ + x5> , ye = ||u5||(p 1)/2(9 —z.). (1.4)
[[ue| 2
Theorem 1.1 Assume N > 5. Ase — 0, we have

>\1,€ - 1/p7

N-2

) > U0 = (1pm) | in CRRY)

1+ |y|?
Pv1.e = (N = 2)onG(-, 20) in Cpo(Q2\ {20}).

e
Also, A1 is simple for e > 0 sufficiently small.

Theorem 1.2 Assume N > 6. Then fori=2,3,--- N + 1, we have

N
Uza - E az]

~ inCL (RY), (1.5)
j=1 (1+ ’y| ) 2

2 oG . _
50 o > (2 0y i OB G20 (10
j=1 !

for some d@; = (a;1,a;2, - ,a;N) # 0 as € — 0. In addition,
HUEHm (Ai,g — 1) — M,ui_l, g — 0, (17)
where py < po < -+ - < py are eigenvalues of HessR(xg) and

B (N —2)0%  onT(V+2)
2 [on UPYVUPRdy (N +2)T(N/2 + 1)

Furthermore, d; is an eigenvector of HessR(xq) corresponding to pi;—1 and d;
is perpendicular to @; in RN if i # j.



Theorem 1.3 Assume N > 6. As e — 0, we have

. 1— |yl ,
nely) = by —— U i G (®Y) (18)
(1+y[?)2
for some by.o # 0, and
| An42e = 1) = T, (1.9)

where
N —2)2(N — 4)0% R
p= W2 Do) _ (v ) (v = 4)MR(a) > 0.
Cop( 2 )f]RN (1+‘y|2)w+2dy

In [3], Grossi and Pacella considered the eigenvalue problem

—Av = A(co(p—e)ut™ v inQ,
v=20 on 012,

V|| =1

on a smooth bounded domain Q C RY (N > 3), where u. is a solution of the
slightly subcritical problem

—Au = cpuP™¢ in (Q,

u >0 in €2,
u=20 on 0f),
fQ\VUEde L

with the property lim._. = Sn.

(fﬂ \us\p—eﬂd;p)ﬁ

In addition to the qualitative properties of eigenfunctions, they obtained
analogous results about the asymptotic behavior of eigenvalues and eigen-
functions as ¢ — 0. We will prove above theorems along the line in [3].
However, we have to control additional linear term eu,. in (P.), which causes
some difficulties.

As for the qualitative properties of eigenfunctions, we have the same
theorem in [3]. We omit the proof of the next theorem since the proof in [3]
works well also in our case.

Theorem 1.4 Assume N > 6. Define N;. = {z € Q | v;.(z) = 0} for
1 € N. Then for ¢ > 0 sufficiently small, we have the followings.
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(1) The eigenfunctions v; . has only two nodal regions fori =2,--- N +1.
(2) Ni. MO+ ¢ if Qis conver and i =2, , N + 1.

(3) Antoe is simple and vyyo. has only two nodal regions. Moreover
Ny 2NN = 9.

2 Preliminaries
In this section, we collect lemmas which are needed in the proof.

Lemma 2.1 The following identities hold true. For anyt € N and for any
y € RY,

Oue ., ,0v; .
| = GG as = (1=

+2¢

(copug_l + 5) Wev; dx

S— 55—

UV, d, (2.1)

where w.(z) = (x —y) - Vue + I%ug, and

)de = (]_ — /\i,e)/ (copué’_l + 5) (%)Ui,adl‘ (22)
Q 81‘

ou, ) Ov;
50 81'] 81/

J

where v = v(x) is the unit outer normal at x € OS).

Proof. By an easy calculation, w, satisfies

—Aw, = (copuP™" + &)w, + 2eu, in Q. (2.3)
Then follow the proof of Lemma 4.3 and Lemma 5.1 in [3] with (2.3).
Denote
_ 1 Yy
U (y) = Ue — + x|, yeEl. (2.4)
el \ Jlue]| =
By a result in [4], we see
1 =
~ _ 2 (N 1N
. — Uly) = (1 n ‘912) in C;, . (RY) N H (RY). (2.5)

Furthermore, we have



Theorem 2.2 (Han [4] and Rey [5]) Assume N > 4 and let . € Q be a
point such that u.(z:) = ||uc||. Then after passing to a subsequence, we have
the followings: There exists a constant C' > 0 independent of € such that

e |

ue(r) < C v, (Vo ef), (2.6)
(T4 [Juc|[P~ e —2?) =

[uellue — (N = 2)onG (-, 20) in Cioe(2\ {0}), (2.7)

as e — 0, and

lim & log [[uc]| = 404 R(x,) (N = 4),

where oyay = fIR{N U?dy.
Theorem 2.3 (Bianchi and Egnell [1]) The eigenvalue problem

—AV; = \icopUP~ 'V, in RV,
V; c D1’2(RN)

where DM2(RY) = {V € LN/ W=2(RN) : [ [VV|2dy < +oo}, has eigen-

values
M=1/p<lo= == Av1 = Ay =1<Ay3 <

with eigenfunctions

N-2

1 2 ou
Vi=U=— , ‘/;: ":27...7]\/'_’_17
: <1+|yl2> Iyi-1 ¢ )

d N -2
Vise = x| AYDRUOg) =y VU + S0
N2 = o] (A\y) =y-VU+ 5
Note that the pointwise estimate (2.6) is equivalent to

i-(y) < CU(y), Vy € Q. (2.9)

Also, we need the following pointwise estimate for eigenfunctions. For
the proof, see [2]. In the sequel, we assume always N > 5.
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Lemma 2.4 For any i € N, there exists a constant C > 0 independent of €
such that
|0ic(y)] < CU(y) (2.10)

holds true for all y € Q..
By elliptic estimates, (2.9) and (2.10), there exists some V; such that
b — Vi inCL(RY) (i€N).
Also we can check that [, |V [*dy < C (see [2]), so V; € D'*(RY). Put
A = lim. o A\; .. Then by (2.5) and the equation satisfied by v; ., V; satisfies
—AV; = N (copUP™ ) Vi in RY,
fun [VViPdy < oo,

We see that V; #Z 0 by the estimate (2.10). Thus by Theorem 2.3, we have
the following.

Lemma 2.5 Suppose \; =lim._o\i. = 1. Then

Y 1 —|y]?

N
7 pp— . . ; 1 N
Vie — ‘/; ;az,j (1 + ‘y|2)N/2 + b1<1 T ’y|2)N/2 m ClOC(R ) (211)

as € — 0 for some (a;1,a;2, - ,a;n,b;) # (0,0,---,0).
From Lemma 2.5, we can obtain the following convergence result. See [3].

Lemma 2.6 Suppose \; = lim._g\;c = 1 and b; # 0 in (2.11). Then we
have

HuEHQ'Ui,E — —(N = 2)bjonG(-, ) in Clloc(ﬁ\ {z0}) ase—0. (2.12)

Now, since the blow-up point z is an interior point of {2, we may assume
that there exists p > 0 such that B(z.,2p) C 2 for any ¢ > 0 sufficiently
small. We employ a cut-off function ¢ = ¢(z) such that ¢ € C5°(B(x.,2p)),
0<¢<1and ¢ =1 on B(z.,p). Denote

bie(z) = 6(2) (?;) . j=1,---,N, (2.13)
Wnsie (@) = 6(2) ((x )V + ]%u> . (2.14)

Then, as Lemma 3.1 in [3], we have the following lemma.

7



Lemma 2.7 u., {¢jc}j1.. N, ¥UNnt1, are linearly independent in Hi ().

Proof. Assume the contrary that there exist qgg, e, -, N, ON11.
N+1
such that Y77 a?_ # 0 and

N

Qe Ue + Z Oéj,swj,s + aN+1,sz+1,€ =0
j=1
in 2. Without loss of generality, we may assume that Z;YZJBI 04]2-7€ =1
First we claim that ap. = 0. Indeed, if o # 0, then we have u. =

Z;V:’ZI BjY;- where 3. = —a./ap.. Putting x = x. to the both sides and

noting Vu.(z.) = 0, we have |ju.| = ﬁNH,E%HuEH, thus fyi1e = ’%1 if

ape # 0. On the other hand, by differentiating the equation of (P.) and
noting ¢ =1 on B(z., p), we see
_ij,s = (copuéjil + 8) wj,a on B(xsa p)a (] = 17 ) N) (215>
Recall w(z) = (x — x) - Vue(z) + %us satisfies (2.3), thus
—AYni1e = (copu§_1 + 5) YNy + 2eu.  on B(xe, p). (2.16)
Multiplying ;. to (2.15) and fy41. to (2.16), and summing up, we have
N+1 N+1
—A (Z 53',5%75) = (copul™ + ) (Z ﬁj,a%’,a) + 2e0n+1,cUe
j=1 j=1

on B(x., p). Moreover, since u, = ZNH Bjje is a solution to (P.), we have

7=1
N+1 N+1
—-A (Z ﬁj,e%‘,a) = (cw’;‘l + 5) (Z ﬁj,e@/)j,s) .
j=1 Jj=1

Comparing both RHS’s, we have c(1—p)ul™' = 2¢8y1. on B(z., p), which
is impossible for yi1. = p%l > (. Therefore we conclude that ag. = 0.

Next, we claim that a1 = 0. Indeed, putting z = . into Zjvzl QWi+
ant+1:UN+1. = 0and noting ¢(z.) = 1 and Vu.(z.) = 0, we see aNH,S(I%)ug(xg) =
0. Thus we obtain oy, = 0.



Now, we obtain Z;VZI a; V. = 0 on €. By scaling, this leads to

for y € Q., where ¢.(y) = (b(H = + z.). Using 4. — U in C}?_(R") as

e — 0, we get that Z NeT gg =0 on R"Y, where a; = lim._p ;.. Since
g—g are linearly independent, we have that a; = 0 for all j = 1,2,--- | N.
J
But this is impossible since Zjvzl oF = lims_,o(ZjV La?.) = 1. Thus we have

7€
proved Lemma 2.7.

Y

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. By the variational characterization of
A1, we have

2
d

A= inf fQ|VU| * )

ver (@) [, (copu8 + &) v2dx

Inserting v = u., we see

\ Jo |Vu5|2dx S (cou? ™t 4 ) uZda
be = copul ™ + ¢ uzdx copul ™! + &) u2dx
Q Q €

By scaling, the right hand side can be estimated as

Co fQ ﬂp+1dy + 5||us||_4/(N_2) fQE ﬂgdy
cop Jo, W dy + lluc ||~V N=2) [, a2dy
co Jon UPTrdy + o(1)
cop Jpn UPHdy 4 o(1)

)\15<

e =

as € — 0, which implies limsup,_,, A1 < 1/p. Hence by choosing a subse-
quence, we may assume that A\; . — A € [0,1/p]. Now, 7 . satisfies

~ o ~n—1 e ~ .
_AULE - )‘1,5 (Copug + ”uE”p—l) V1,e 111 Qsa
U1 =0 on 0f),.



As in the proof of Lemma 2.5, we see that @ . is bounded in D'?(R") and
0. — Vj for some 0 # V; € DV2(RY). Letting € — 0, we see V; satisfies

—AV; = XeopUP 1)V in RY,
fRN ‘VV1|2dy < o0, ||‘/1||L°°(]RN) = 1.

Since there exists no eigenvalue A less than 1/p by Theorem 2.3, we must
have A =1/p and V}, = U.

Now, let us prove that A;. is simple for small €. Indeed, assume there
exist two eigenfunctions v; . and w; . corresponding to A; .. Define v ., w0, ¢
as in (1.4). By the orthogonal property (1.3), we have

/ COpﬂg—lﬁl,swl,ed(y + €||u5||2—(p—1)N/2/ /ﬁl,Ewlﬁdy = 0.

€ QE

Since ¥y ¢, w1 . — U, the dominated convergence theorem implies fRN Urtldy =
0, which is a contradiction. The last claim will be proved just as in Proposi-
tion 1 in Han [4]. This finish the proof of Theorem 1.1.

4 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 along the line of [3].

Proposition 4.1 Fori=2,---,N + 1, we have
C
Mg S 14—t (4.1)
e[| ~=2
for some Cy > 0 and
lim A = 1. (4.2)

Proof. By the variational characterization, A; . can be expressed as

, Jo [Vv|*da
Nie = inf max — .
WCHE (Q),dim(W)=i vEW fQ (Copuig + 5) v2dr

We take
W = VV’L = Span{u67 wl,éa e 7wi—1,6}7

10



where 1), . are defined in (2.13). For ag, a1, -+ ,a,-1 € R, we put

i—1

v = aoU. + Z a; Ve = ague + ¢z € Wi,

j=1
i~ due
where z. = . aj(axj ).
Calculating as in [3], we have
Jo |Vv|2dx { N. }
max = max 1+ —
veW; f copul™ Ty e)idr  aoarysaia D,

where N, = N! + N? + N3,

N! = aZeo(1 —p) / ultdz,
Q

1—1
ou,
NZ = 2aoco(1 — p) Zaﬂ'/ﬂu&b((‘?m)dx

E a;a; | C(b| 6 Ug)
a.l’
J

j,=1

and D. = D! + D? + D2,

D! =a? / (copu? ™! + e)uldz,
0

ou,

1—1
Dg = 2ay Z a; /Q(c()117u§_1 + 5)u€gb(a

)dx

Lj

o, O0u. . Ou,
Z@g@l/ copuP ! +€)o (ax-)(axl)dx'
j

7,l=1

N2 and N3 can be estimated as the same way (3.24) and (3.25) in [3]:

Ou, 8u€ 8u€ B 1
[ ot oy = AT | ek o) G = O
Hence 1 1
N2 =0(+—=), N2=0(—73)
[Jue|[PH e[

11

).

(4.3)



As for D%, we write

ou cop 8u”+1 8u
p—1 ZVdy = 0
[ eomt - cuo(Giyan = [ Ao EL
By integration by parts and (2.7), we have
D= O(— )+ O(—). (4.4)
[Juel|P e |
As for D3 by change of variables
Y aua p 1 18U5
r=——r e, (1) =lull T T = (y),
el ™= oz dy;
we see just as (3.26) in [3],
Oue ., Ou
p—1 .2 € \d
o GG
p—1 p—1 (911
= ||u. p1+2(2+1)2N/ ~p 1¢2 € dy
el e (G (G
oUu\ (oU
e ([ (5) (5 ) o o)
et ([ o (52) (5 ) o otw
S
el (%] Uty ). (45)

al

8u 8u p—1 Pt 8u ou
5 € d = ||u. 2( +1 N/ e £ d
/ (G ) G = e )G ) G

L 49

where ¢.(y) is defined as before. Here, we have used the fact Vi, — VU in
L*(RY) by (2.5). Thus by (4.5) and (4.6),

1—1
1
3 2 -1 —1 2
D2 = 3l (5 [ o ivukar o)
i—1 1
= 2d 1)) . 4.
+edd (N/RN'W' y+of )) (4.7)

12



Now, by testing (ag,as, - ,a;—1) = (0,1,--- ,1), we have
Jo |Vv]2d:c N.
max = max 1+ D
veW; fQ (copuE + 8) dxr  (ag,a1,,ai—1)€ER?

it QIVcbI (55 )(Ghe )d

oxy
T Xk JoleopuE T+ e)@?(Ge) (G )d
1
—1 O<Hual\2) ‘
[ue/[P~* + O(e)
Thus we have some Cy > 0 such that
Vo|*d C
max Jo U| ° > 1+ —OH, (4.8)
veW; fQ (COpUs + 8) vidz || ue P

just as (3.27) in [3].
Let (age, are, - ,a; 1 E) € R’ be a maximizer ofmaux(aO a1, ai—1)ER? {1 + g—z}

We may assume that Z 1 j . = 1. From the above estimates and (4.8), we

check that [|u.[]*af . is unlformly bounded in ¢ as (3.30) in [3], thus we have

Jo \Vv|2d:1:
max
vEW; f (copu6 +5) v2dx

-]
DE (a07al7"'7ai71):(a0,57a1,57“'aaifl,s)

L. ecoll = P oy 2+ + a0 Ol gfer) + O
a3 [ucl? Joleopu? "+ e)u2dz + O pyhmr) + O() + O(fue[71) + O(e uc 2
O(” HP>+O( )
O(mr) + 0(2) + O(fluc [+ + OclJuc]?)

Cy
e [P+

<1+

<1+

for some Cy > 0. This proves (4.1).

By using (4.1), we obtain (4.2) just as in [3]. Thus the proof of Proposition
4.1 is finished.

13



Lemma 4.2 Leti € N be such that lim._,o \;c = 1. Ifb; in (2.11) of Lemma
2.5 is not 0, then we have

1

Nie — 1= W(Cg +o(l)) ase —0 (4.9)
uE

for some Cy > 0 independent of ¢.

Proof. Assume b; # 0. We use the integral identity (2.1) in Lemma 2.1
with y = .. The LHS of (2.1) can be written as

1 Ol O] |vi
[Jue|? aQ(J;_IE)‘V( ov ) ov )ds.
= (v 2ot [ v (K}
- ||u5||3[ (N —2)%o%b; aﬂ(x ) V(ay(x,xo) ds, + o(1)
1
= ||U ||3 [_<N— 2)30']2VR<I0)bi—|—0(1)} . (41())

Here we have used (2.7), (2.12) and the fact [, ((z—z0)-v) (52 (z, xo))2 ds, =
(N — 2)R(xo).
On the other hand, the RHS of (2.1) = I} + I, + I3, where

L=01- /\z‘,s)Cop/ ug_lwaviﬁdw,
Q

IL=(1- )\Z-yg)z—:/ W dr, I3 = 25/ UV, cdx
Q Q

and, as before, w.(x) = (x — z.) - Vu. + ]%ug. Denote

1 y _ 2
_ . e 411
HUusE( +xc) =y - Vye(y) + - 1u€(y) (4.11)

W (y)

p—1
e[ ™2

for y € Q.. By (2.5), we see

- N-2_— (N-2 1— |y - 1 mN
w5—>y-VU+TU—< 5 )(1+\y!2)N/2’ in Cp,.(RY).

14



Thus,

I = (1= Ao)eoplue [P~ @DV / Vi, (y)dy
Qe

=(1- )‘i,a)COPHUEH_lX
N
X / Up_l (yVU—FLU) Zai’j yj2N2+bi 1_|:Z|2NQ dy+0(1)
RN p—1 ) \Z A+ 1+ [y

(T +[y)»

= - xolel e (T2 | [ o o).

Analogously,
1 — 2\2
bR o).

N -2
L= (1= e [ Y22 - @v+2ra-2) bi/ U=yl
=108 (557 e e (LH )

. _ 1— |y
Iy = 2eju.||- VDI -2y, / d 1
3 E"Hu || oN U(y) (1+ |y|2)N/2 y+0( )

Dividing both sides of (4.10) = I} + I, + I3 by b; # 0, and calculating with

(2.8) when N > 5, we obtain the result for
N —2)*(N — 4)03

_ ul2)2 .
Cop(¥) fRN %dy

Cy =

Now, by Proposition 4.1 and Lemma 4.2, a contradiction is obvious if b;

in (2.11) is not 0. Thus we have (1.5) in Theorem 1.2.
(1.6) is a direct consequence of Lemma 3.3 in [6] below. Note that now

[0l = 1 while [[viell = [[uc]| in [6].

Lemma 4.3 Assume N > 6. Fori =2,--- N+ 1, letb; = 0 and d; =
(@1, ,a;n) #0dn (2.11). Then we have

al oG
el P e = o e (a_<w z>)

in Cloo(Q\ {z0}).
15




Now, we prove (1.7). We return to (2.2). By (2.7) and Lemma 4.3, we
see

a||ua||2+2/(N—2)v6

7, dx
ov )ds

LHS of (2.2) = — / (Oluelle

||U, ||3+2/(N 2) 8xj

1 oG\ o [0G
N H%H“W (N =2) Za"’“/ (ax) vy (a_zk) (, 0)ds; + o(1)

1
- || || 312/ (N=2) UN Z %, kazzﬁzk

where we have used the fact [, (%) 2 (ng) (x,x0)ds, = %8‘2,23}2 (2)
2 T Chiad)

On the other hand, RHS of (2.2) = I + I1 where -
Ou, Ju
I=(1-X. Pt pedr, I =(1— )\, ——)vj dz.
(U= Adap [ (G vade, 1= (1= e [ (G

As before, we have

_ (Aie — 1) copP p—1 2
I= [ | V-/-2) N(N — 2)%1‘ n UP VU dy +o(1) | ,
and
(/\ie B 1) 1 / 2
Il = . i Ul“d 1) .
uc V-3 N = 247 | fou |V U F 0V

Multiplying [|u.||**?/¥=2) to the both sides of (2.2) and recalling (2.8), we
see that

N —2

N
0' E Qi 7
N " szaz]

z=x0
= (e = Dy {I!ueHQN/(Nz’p [ v SR+ Ol )}
holds for any j =1,--- , N. Hence

(Nie = Dlue |2 — My, ase —0,
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where

_ N 52
(552)ak - Y k=1 Gik oy 55 (To)
(A .

M =
prN UP—I‘VUde’ Q; j

By the definition of 7;, we have Zszl %(wo)ai,k = m;a;;, thus n; is an
eigenvalue of the Hessian matrix of R at x and d; is a corresponding eigen-
vector. If i # j, we see that @ and @; is perpendicular to each other in RY,
because of (1.3).

Thus, all n; is one of N eigenvalues of HessR(z() and we have n; = ;1

fori =2,---, N + 1. This ends the proof of Theorem 1.2.

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. First, we prove

Lemma 5.1
ANi2e — 1 ase — 0. (5.1)

Proof. Since we know liminf. .o Ay;2. > 1 by Proposition 4.1, we have

to check that limsup, g An42. < 1. For this purpose, we use a variational

characterization of Ayi2 . to obtain

2
Ani2e < max fQ [Volde
£

, 5.2
vew [ (copug_l +¢) vida 52)

where W = span{u., p(2%), .-+ ¢(2%), pw.}, ¢ is a cut-off function as in

ox1 oxrn
Lemma 2.7, and, as before, w.(x) = (x—xg)-Vu5+Z%u5. For ag,ai,--- ,an,d €
R, we set Z.(x) = Zjvzl aj(2%) + dw.(z). Direct calculation shows that 2
J

satisfies the equation
—AzZ, = (cgpuﬁfl + 5) Z. + 2edu,.

We test (5.2) by v = agu. + ¢2. € W.
As in the proof of Proposition 4.1, we have

fQ |Vo|*dx AE
A -1 = max 1+ — ,
vew fQ(COpuZEJ + €)U2dl‘ ap,a1, - ,aN,d
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where N. = N! + N2 + N3 + N4,

N} = aZeo(1—p) / ultdz,
Q

N? = 2a9co(1 — p) / ulopz.dx
Q

= 2a0co(1 — {Z a]/ /upgbwe(x)dx},

8u au
222 e 5
/\v¢| 2dx = Zajal/ Vo) ?( oz, 8xl)

7,l=1

N
ou,
+2dZ/Q|V¢\2(ax )wgdx+d2/Q]V(b|2w§da:,

J

aus

= 2d5/ P 2ucdr = 2d5 a] / »? uE dx + 2d%¢ / d*uw.de,
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and D, = D! + D? 4+ D3,
lA); = ag/(copu’g_l + e)ugd:v,
Q

D? = 2q, / (copu? ™! + e)uspz.dax
0

= 2agcop Z a; /

+ 2aocopd/
Q

/ uaqb(a“j)

ufow.dx + 2a0d€/ U pw.dzx,
Q

A

Dg’ = /(COpué’_l + 6)¢223dx
Q

= Z/ copu? " + ¢ ¢2(

7,l=1

ou au ou 8u
— p—1 2 E “ e 2 z—: 5
copjlzzl a;a / o ( 8% 8351 Ydx + € Z a;a / o ( 895] 81’[

—f-QCodea]/up L2 w6 dx—i—?sdz%/gb w( 8u8

+copd2/u§1¢2w§dx+5d2/¢2w§dx.
Q Q

ou
>(ala_£l}l + dwg)dx

Let (ag,ai,--- ,an,d) denote a maximizer of maxao,al,...,aNﬁd{l + %}
(>

i 1a] + d?> = 1. Since the case ay = 1 is

obvious, we consider only the case Z i1 aj +d? #0.
We calculate, as the derivation of (7.8), (7.9), (7.10) in [3],

/ ulow.dr = / ulo ((1‘ — ) - Vu. + 2 u5> dx
Q p—1

which is normalized as a3 + Z

N 2
NoptlVy 2 = p+1
/p—l—lzﬁx] 7)™} (p+1 p—1>“ ¢dz
L 1 qu o4l 1
- P + 1 amj< (‘Té‘) )ue dx = O( ||u6||p+1)7 (5?))
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5, 0u, B 2 9. 1
L 199F G weds = O(). [ [VoPutas = 0s) (50

since (2.7) and V¢ = 0 near xo. Thus by (4.3), (5.3), (5.4), we have

. 1 “ 1
S T e o
Also, as (7.11), (7.12) in [3], we have
/ . 1¢2(8u€)wsdiﬁ = [Juc |/ 2o(1), (5.5)
Q Zj

and

/Q wlQwidr = (?)Q /R U ) (—(1<1+_|y|‘z|)2]3/2>2 dy + o(1).
(5.6)

Since

ou 1 0¢? 1
2 € — — 2 2 = — = _— 2 == _—
/Q¢ uE(@xj)dx_ 2/Q¢ o, uldax /aSC]u dx O(HUEHQ), (5.7)

nd
2 2 2
/gb uawadzx:/gb Us ((az—xa)-Vug—i-p_luE) dx

/qb - 2. a—xj — (x2); )ug) dx + (]% _ g) /Q¢2ugdx

/ Zw — (w))de — [ $ulde
2 € axj .7 Te J O £

= ! 1 2 . 1
— O(“ue“Q T e[ 2) ( RNU dy+0(1)> = O(W), (5.8)
Nf can be estimated as
Y € € B 1
Ng _O( )_‘_O(HUEHLL/(N72)) _O(—HUEHQ)

ue|?
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by (5.7), (5.8) and (2.8). Therefore, we have
N.=N!4+N?4+ N3+ N?

1 1
= azco(1 —p) / u?dz + O(
Q

— IV +O0(—=) < O0(—=).
e O = O

Furthermore, by change of variables, we see

ou 1 1
2 6 20%de = O(——MM 5.
/(b axj wsdl’ O(||u€||2/(N_2)>7 /Q(b wgdx O(||U€H4/(N_2)) ( 9)
Thus we have
1 € 1
)+ ) ) =

by (4.4), (5.3), (5.8) and (2.8), and

N
. 1
D? = cop (g a?) e |/ 2) <N /N U VU Pdy + o(l)>
R

=1

N
€
e) +d (Z%) (fue | =2) +O(W)

1
TG

D? = 0O(

€

)

<

+0(

by (4.7), (5.5), (5.6) and (5.9).
From these, we can estimate D, from below, just as (7.14) in [3]:
D.>D?+ D?

N
>y ||u || Y2 (Z a?) +d (Zaj> (ue| [ N=2) + yod?

> (71/2)|ue |/ (Za> (12/2)d* > &
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for some 71,7, > 0 and § > 0, because Zjvzl a? and d* can not vanish at the
same time. Therefore, we have

Nﬁ O(II 1||2)
limsup Ay < limsupq 1+ 5 <1+ lir%—g = 1.

u
e—0 e—0 e 5

Since we have checked (5.1), we know by Lemma 2.5 that

N
5 Yk 1—[y?

UN4-2, — AN+2,k 77 1\N/2 + bN+2W
2 AT T+ 1yP)™

in C} _(RY). Now, for fixed &, vx 42, and v; . is orthogonal in the sense of (1.3)
forte=2,--- , N+1. From this, we have dy,o-a@; =0 forany i =2,--- N+1.
Since @, are linearly independent in RY, we have that dy, o = 0. Thus we
obtain (1.8).

Since byio # 0, Lemma 2.6 assures that
[uclPons2e — —(N = 2)onbnioG (-, 20), in Cpoo(Q\ {z0}) ase — 0.

Then, we can repseat the same proof of Lemma 4.2 (with i = N + 2) to
obtain
HUEH2()‘N+2,E -1) =T,

where I' = C5 in (4.12). Calculation shows Cy = (N — 2)(N — 4)M R(x).
This proves Theorem 1.3.

References

[1] (MR1124290) G. Bianchi, H. Egnell, A note on the Sobolev inequality,
J. Funct. Anal. 100 (1991) 18-24.

[2] (MR1723563) K. Cerqueti, A uniqueness result for a semilinear elliptic
equation involving the critical Sobolev exponent in symmetric domains,
Asymptotic Anal. 21 (1999) 99-115.

[3] (MR2136650) M. Grossi, and F. Pacella, On an eigenvalue problem
related to the critical exponent, Math. Z. 250 (2005) 225-256.

22



[4] (MR1096602) Z. C. Han, Asymptotic approach to singular solutions
for nonlinear elliptic equations involving critical Sobolev exponent, Ann.
Inst. Henri Poincaré. 8 (1991) 159-174.

[5] (MR1006624) O. Rey, Proof of two conjectures of H. Brezis and L.A.
Peletier, Manuscripta Math. 65 (1989) 19-37.

[6] (MR2454875) F. Takahashi, Asymptotic nondegeneracy of least energy

solutions to an elliptic problem with critical Sobolev exponent, Advanced
Nonlin. Stud. 8 (2008) 783-797.

23



