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Synopsis: In this paper, (1) in case of the forward type three layer neural network (NN), we
make clear that there exists the most suitable number of units in the hidden layer. (2) In case of
the multi-layer forward NN, when the total number of the units in the hidden layers is limited,
the success rate of the learning is increased to arrange their units numbers as descending order
from the input layer to the output one. (3) The learning of NN, whose temperature coefficient
T is not one, is transformed into the equivalent learning scheme whose T is one, by changing
the learning coefficient o to /T2, so that we need not treat the temperature coefficient as an
independent coefficient concerning the learning of NN.

Keywords: neural network, parity discrimination, the number of hidden units, temperature
coefficient, learning.

1 Introduction

In this paper we only treat the forward type neural networks (NN’s), especially three layer
NN’s. Concerning the learning of these NN’s, those are usually problems that; (1) what is the
suitable number of units in the hidden layer?; (2) which temperature coefficient is desirable?

In spite of the importance of these problems, they are determined by one’s intuition and
experience at present.

Regarding the problem (2), it is assertened that while learning the convergence rate is in-
creased by decreasing the temperature coefficient [1].

In this paper we deal with these problems taking the parity discrimination problem as an
example and make clear the efficiency of NN learning concerning the number of units in the
hidden layer and concerning the temperature coefficient.

The reason why we take the parity discrimination problem as an example is that the minimum
number of units in the hidden layer is proved to be [N/2] + 1 for N bits parity discrimination
[2].

One of the main results in this paper lies in the clarification that there is a reasonable
number of units in the hidden layer by which an efficient learning is done and the number is
experimentally obtained as four times as large as this minimum number of units in the hidden
layer regarding to the parity discrimination.

The other lies in that the learning constant o and the temperature coeflicient T are mutually
connected and by changing o to a;/T? and weight coefficient w;; or w; to w;;/T or w;/T, we can
theoretically and experimentally get the same learning result or process of NN in which 7' = 1.0
as the process in which 7" # 1.0.

Using this rule, we are able to execute the NN learning depending only on «, but not
concerning the temperature coeflicient.

If we know the times of units in the hidden layer compared with the minimum number, in
parity problem, we may conjecture the preferable number of units for the other problems.
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2 Parity Discrimination

There is 2V different signals for N bits signals. To discriminate these signals by parity is
to classify them into two categories, in which adjacent vertex to each other are classified as
the different categories respectively, considering the signals as the vertexes of a N dimensional
hyper-cube. This classification is regarded as one of the most difficult classification problem for
binary signals.

The minimum number of units in the hidden layer for a forward type three layer NN to N
bits parity discrimination is already proved to be [N/2] + 1 [2] [3] [4].

But as this number is a theoretically possible minimum number of hidden units, actually this
number is an impossible number to discriminate the parity of the signals if the input number N
is seven or more. Accordingly to know what times of the theoretical minimum number of hidden
units to be converged is efficient, is thought to be very useful, even for other discrimination
problems to conjecture the necessary number of hidden units.

In the sequel we abbreviate this number as the minimum number of hidden units or more
simply the min number.

3 Experiments and their results

Fig.1 shows the relation between the convergent rates on vertical axis and the number of
hidden units on horizontal axis. The values of the parameters in these experiments are (1) 0.2 for
learning rate, (2) 0.9 for momentum (3) 2,000 trials in learning cycle, and 1.0 for temperature.
All other experiments in this section are done by the same conditions as this.

According to this graph in Fig.1, we can conclude that the convergent rate becomes higher
as the number of the hidden units is larger, but saturates at points near about four times of the
min number.

Table 1 shows the convergent rates when the numbers of units in two hidden layers are
changed on the condition that the total hidden number of units is constant. Judging from this
table the arrangement of the number of the hidden units in each layer may be recommended to
arrange as the descending order from the input layer to the output one.
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Fig.1 Relation between convergent rates and numbers of hidden units

Fig.2 is a graph showing the relation between the computation efficiency, that is, [convergent
rate (%)/ computing time until converge] and the number of hidden units in three layer NN
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as horizontal axis. The definition of the computational efficiency is based on the idea that the
convergent rate is gradually saturated when the number of hidden units is increased, but the
computation time is much increased than the increment of this convergent rate. So that the
efficienct number of units is at the point that this ration is maximum.

According to this graph we can clearly see that there exists the most suitable number of
hidden units concerning this computational efficiency.

Table 1 Convergent rate when the numbers of hidden units are changed

construction of NN | convergent rate
6-4-12-1 13%
6-5-11-1 30%
6-6-10-1 37%
6-7-9-1 60%
6-8-8-1 53%
6-9-7-1 60%
6-10-6-1 80%
6-11-5-1 7%
6-12-4-1 7%
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Fig.2 Relation between the computation efficiency and the number of hidden units

4 Application of This Efficiency to a Numeric Recognition

We applied the above mentioned proposition to the proposition that there exists the most
suitable number of hidden units to a numeric recognition in order to ascertain it.

Fig.3 shows the relation between the number of hidden units (as horizontal axis) and the
computational efficiency concerning a numeric recognition in which the mesh of a numeric char-
acter is divided into 7 x 5. The construction of the NN is 35 - [the number of hidden units] - 10.
In this case we can also see that the most suitable number of hidden units exists.

As 2% > 10 > 23 where 10 is the number of numeric and 4 is the number of inner expression
needed to express its number, so that the minimum number of hidden units may be thought to
be 4.

Accordingly the most efficient number is also four times of this minimum number 4, that is
16, as same as the case of the parity discrimination.
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Fig.3 The computation efficiency in case of the recognition of numeric

5 The Relation between Learning Constant and Temperature
Coefficient

5.1 Learning and local minimum

We define here the construction of a three layer parity discriminating NN precisely in Fig.4
in order to obtain the relation between learning constant and temperature coefficient. Fig.5 is
a simplified construction of Fig.4 using matrix and vector notations.

Where X is input, W ig weight coefficient to i-th layer, 0§-1) is threshold of j-th unit in the

i-th layer, I](i) is a net input to the j-th unit in the i-th layer Y is the output, those are expressed
as follows;

X = (1,79, +,oN)", z; =0o0r 1, . (1)
where ¢ is transpose.
951) Wil wor 't WN1
wl — 65V wip wam o wne @)
0%,,) WIN W2N WNM
I(l) = (11]£1),I‘§1),"'1I)(\/}))t (3)
0 = wx (4)
WO = (0@, w,ws, -+, wu). (5)

The local minimum is the point where
VE =0, (6)
where

E =Y (Yp—2p)*/2. (7)
P
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Where P means the P-th pattern of binary signals. Suffix P is used only when the discrim-
ination for patterns is necessary.
And v is defined as;

¥ = (8/0wi1,8/Bwiz, -+, 8w, 8)Bwr, - -+, 8/0wrr,8/063V, - -, 8/06),6/60P).  (8)
If we assume that each unit has the same time constant, the output Y is expressed as;
Y = fr(W® fr(WX)). (9)

If we transform W' = TW() in the above equation, we can get the equivalent NN where its
weight parameters are W) and temperature is T = 1. Both outputs are equal and furthermore
both constructions are topologically the same and they have the same local minimum. That
is, in the equivalent NN’s, all relations are not changed between the NN of T # 1.0 and the
NN of T=1.0 by the transformation from W to W’. Accordingly the expectation to get higher
convergent rate by changing T from large to small as for the case of the Hopfield type NN’s[1]
is denied at least for this forward type NN’s.

The learning is done to minimize the error E. In the sequel we put T as a suffix when the
parameter 7' # 1 in NN as follows. For sigmoid functions;

fr@) = 1/0+e*M) (10)
fl@) = 1/(1+e™). (11)
According to Eq.10 and Eq.11, we get the next relation as;
f(z/T) = fr(z) (12)
Using this relation, we get a next relation
Yr = fr(W§ir(Wy X)) (13)
Wi Wr(1) |
= —_T 12 x
) (14)
= fWOfwly) (15)
=Y, (16)
where we used the relation as next transformation as;
wi — wi/r 17)
Oy
thetai
D e
Wy N va |
X, Q Q Q
w” X2
(S O—v

Wy

(W

Fig.4 A construction of three layer NN
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Fig.5 A simplified construction of three layer NN

Next we will get the learning rule for the NN of T = 1 which is equivalent to the NN of
T # 1 dividing into two cases.

(1) From the hidden layer to the output layer

The learning rule is

Awri®(t) = —opdP0r; + frov) (t - 1) (18)
dP = 2Yp - zp)dfr(I?)/dI®) (19)
Using Eq.17 we get
df (T1® /T
TAwPD(E) = —ab(yp - tP)—f( / )OTi +BrTAw (t - 1) (20)
TdI®
df (1
= o3V - 20) 04 prrmn® - 1), (21)
(22)
therefore,
(2)
2P0 = —ar 0 - 2 D)0k prowPia 1) (23)

Accordingly we get the relation for the equlvalent learning constant o, concerning the NN when
T =1 as;

o = op/T? (24)
B = Pr. (25)
(2) From the input layer to the hidden layer

The learning rule is;

%Z(t) — —(1(1) (1)z1+ﬁTAw( )(t—‘ 1) (26)
1 2 (@ dfr(1 ,-)
- dITj
therefore,
TAUPE®) = ~of e+ BrT A~ ) )
o »l @ 1 dfdW)
i) = T )T'T“"’ Sy (29)
1 df (IM)
_ = @), ,%Y\" )
= TZd Wi = (30)

= )T, (31)
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Therefore concerning the learning constant and momentum, we get the same relation as the
case (1).
We do not describe the case of multi-layer NN at present, but the results is the same as this
three layer case. We can describe the result as follows to summarize above two cases.

The rule that the equivalent NN of T = 1 works as same as the NN of T # 1 is ;

(1) to change the initial weights as
wij = wrij/T or w;=uwri/T,

(2) to change learning constant
a=ar/T?,

(3) to maintain the momentum to be the original value.

5.2 Simulation Results

To ascertain this rule to be true, we used seven bits parity discrimination NN taking the
proper size of NN into consideration, in which we selected the number of the hidden units as
fifteen for input signals of seven bits.

The solid line in Fig.6 shows the convergent rate of NN as vertical axis against temperature
as horizontal axis. The dotted line shows the convergent rate when the learning coefficient ar
is changed into T2ar for each NN with temperature T’s. As we can easily see that in every case
the convergent rates agree well with a case of T = 1. In these cases, we set the initial weight
region as [-1 ~ 1]/T.

In Fig.7, the solid line is the same as the solid line in Fig.6 and the dotted line shows the
convergent rate when the learning constant is changed to ar/T? in an equivalent circuit of
T = 1. Both lines agree so well that it shows the rule we proposed is right.
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Fig.6 Relation between convergent rates and temperature and their converted relation
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Fig.7 Convergent relations between original NN and equivalent NN

6 Conclusion

For the forward type three layer NN, we showed that there exists the most efficient number
of the hidden units which is four times the minimum number of them, through parity discrimi-
nation. In addition to this assertion, for four layer NN under the condition of the total number
of hidden units being fixed, we asserted that the convergent rate becomes higher if the numbers
of hidden units are arranged in descending order. Next, we showed theoretically and experimen-
tally that the back propagation learning of NN, when the temperature coefficients of its sigmoid
functions for each unit have the same value, could be able to work equivalently as the equivalent
NN of which temperature coefficient T = 1, by changing the weight coefficient wr to wr/T and
the learning coefficient ar to ar/T?, through seven bit parity discrimination problem.

A future subject is to obtain the most efficient number of hidden units for general problems,
that is, to obtain the number of which is what times of the minimum number. We think it may
be obtainable by using the principal value analysis.

Another subject is to obtain the changing rule of the learning constant on the way of the
learning. Throughout these experiment we think that in NN the parity discrimination problem
may play a role like benchmark test for von Neumann type computer.
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