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Abstract
We study an operation which measures self-intersections of curves on an oriented surface. It

turns out that a certain computation on this topological operation is related to the Bernoulli
numbers Bm, and our study yields a family of explicit formulas for Bm. As a special case, this
family contains the celebrated formula for Bm due to Kronecker.

1. Introduction

1. Introduction
The Bernoulli numbers Bm (m ≥ 0) are defined by the generating function

x
ex − 1

=

∞∑
m=0

Bm

m!
xm.

We have: B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, . . ., and Bm = 0 for all odd m ≥ 3.
The appearance of the Bernoulli numbers is ubiquitous in mathematics, and a large number
of identities involving the Bernoulli numbers has been known [3] [4] [9] [10].

In this article, we show that the Bernoulli numbers arise naturally from the topology of
surfaces, i.e., 2-manifolds. In more detail, by studying self-intersections of curves on an
oriented surface, we obtain the following family of explicit formulas for Bm:

Theorem 1. Let m ≥ 2. For any integers a and n satisfying 0 ≤ a ≤ m ≤ n, we have

(1) Bm = (−1)a
n+1∑
k=1

(−1)k+1

k

(
n + 1

k

) k−1∑
i=1

i a(k − i)m−a.

Notice that the formula above has two parameters a and n. When a = 0 and n = m, the
formula (1) reduces to the celebrated formula for Bm due to Kronecker ([7], see also [4] [5]
[9] [10]]): for m ≥ 2,

(2) Bm =

m+1∑
k=1

(−1)k+1

k

(
m + 1

k

) k−1∑
i=1

im.

In fact, using the classical formula for the sum of powers (known as Faulhaver’s formula)
and a property of binomial coefficients (see Lemma 2), one can derive the formula (1) from
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the Kronecker formula (2). However, our derivation of the formula (1) is self-contained and
more direct.

Our proof of Theorem 1 is motivated by a topological consideration on an oriented sur-
face. In §2, we consider an operation μ to a curve on the surface. This operation was
introduced in [6] inspired by a construction of Turaev [11], and, among other things, it com-
putes self-intersections of curves. The key is to compute μ(log γ) for a simple loop γ and
we find that it involves the Bernoulli numbers (Theorem 2). Here, we work with a suitable
completion to be able to consider log γ. In §3, we formalize the topological argument in §2
and prove the main results. In §4, we give another self-contained proof of Theorem 1 by
introducing a certain generating function.

The Bernoulli numbers have already appeared in the study of intersections of two curves
on an oriented surface [8]. Our formula provides yet another evidence for a close con-
nection between the topology of surfaces and the Bernoulli numbers. This connection has
been developed in [1] to an unexpected connection between the operation μ, or equivalently,
the Turaev cobracket, and the Kashiwara-Vergne problem in the formulation by Alekseev-
Torossian [2].

2. Self-intersection map and Bernoulli numbers

2. Self-intersection map and Bernoulli numbers
Let S be a compact connected oriented surface with ∂S � ∅. Fix a basepoint ∗ ∈ ∂S and

set π1(S ) := π1(S , ∗). We denote by π̂(S ) the set of free homotopy classes of oriented loops
on S . For any p ∈ S , we denote by | | : π1(S , p)→ π̂(S ) the forgetful map of the basepoint.

We recall the operation μ : Qπ1(S )→ Qπ1(S ) ⊗ (Qπ̂(S )/Q1), which has been introduced
in [6] inspired by a construction of Turaev [11]. Here, 1 is the class of a constant loop. Let
γ : [0, 1] → S be an immersed based loop. We arrange so that the pair of tangent vectors
(γ̇(0), γ̇(1)) is a positive basis of the tangent space T∗S , and that the self-intersections of γ
(except for the base point ∗) lie in the interior Int(S ) and consist of transverse double points.
Let Γ be the set of such double points of γ. For p ∈ Γ we denote γ−1(p) = {tp

1 , t
p
2 }, so that

0 < tp
1 < tp

2 < 1. We define

μ(γ) := −
∑
p∈Γ
ε(γ̇(tp

1 ), γ̇(tp
2 )) (γ0tp

1
γtp

2 1) ⊗ |γtp
1 tp

2
| ∈ Qπ1(S ) ⊗ (Qπ̂(S )/Q1).

Here,
• the sign ε(γ̇(tp

1 ), γ̇(tp
2 )) is +1 if the pair (γ̇(tp

1 ), γ̇(tp
2 )) is a positive basis of TpS , and is

−1 otherwise,
• the based loop γ0tp

1
γtp

2 1 is the conjunction of the paths γ|[0,tp
1 ] and γ|[tp

2 ,1],
• the element γtp

1 tp
2
∈ π1(S , p) is the restriction of γ to [tp

1 , t
p
2 ] and we understand that

|γtp
1 tp

2
| = 0 if the loop γtp

1 tp
2

is homotopic to a constant loop.

Remark 1. The operation μ is essentially the same as Turaev’s operation μT : π1(S ) →
Qπ1(S ) in [11]. In fact, we have μT (γ)γ = −(id ⊗ ε)μ(γ) for any γ ∈ π1(S ), where ε(α) = 1
for any α ∈ π̂(S ) \ {1}. Conversely, one can express μ in terms of μT . The alternating part of
(| | ⊗ 1)μ(γ) is exactly the Turaev cobracket [12] of the free loop |γ|.

We observe that if γ is simple and the pair (γ̇(0), γ̇(1)) is a positive basis of T∗S , then for
any integer k ∈ Z,
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∗
Fig.1. computation of μ(γk) for a simple γ (k = 4).

(3) μ(γk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∑k−1

i=1 γ
i ⊗ |γk−i| (k > 0)

0 (k = 0)∑|k|−1
i=0 γ

−i ⊗ |γk+i| (k < 0).

See Fig.1.
In [6] §4, it was shown that the map μ extends to a map between completions μ : Qπ1(S )̂

→ Qπ1(S )̂ ⊗̂Qπ̂(S )̂. Here Qπ1(S )̂ and Qπ̂(S )̂ are the completions of the group ring Qπ1(S )
and the Goldman-Turaev Lie bialgebra Qπ̂(S )/Q1, respectively, with respect to the augmen-
tation ideal of Qπ1(S ). Then we can consider log γ =

∑∞
i=1((−1)i+1/i)(γ − 1)i ∈ Qπ1(S )̂.

As the following result shows, if γ is simple then one can compute μ(log γ) explicitly and
the formula involves the Bernoulli numbers.

Theorem 2. Let γ ∈ π be represented by a simple loop, and assume that the pair
(γ̇(0), γ̇(1)) is a positive basis of the tangent space T∗S . Then we have

(4) μ(log γ) = −
∑
m=0

Bm

m!

m∑
p=0

(−1)p
(
m
p

)
(log γ)p ⊗̂ |(log γ)m−p|.

3. Proof of Theorem 1 and Theorem 2

3. Proof of Theorem 1 and Theorem 2
First of all, we describe a preliminary construction.
Let Q[[Z]] (resp. Q[[X, Y]]) be the commutative ring of formal power series in an in-

determinate Z (resp. in indeterminates X and Y). For a non-negative integer p, let FZ
p

(resp. FX,Y
p ) be the set of formal power series in Q[[Z]] (resp. Q[[X, Y]]) which has only

terms of (total) degree ≥ p. We have natural isomorphisms Q[[Z]] � lim←−−p
Q[[Z]]/FZ

p and

Q[[X, Y]] � lim←−−p
Q[[X, Y]]/FX,Y

p .

Set z := eZ =
∑∞

i=0(1/i!) Zi. Then the Laurent polynomial ring Q[z, z−1] is a subring of
Q[[Z]]. The augmentation ideal I is defined by

I = Ker(Q[z, z−1]→ Q,
∑

j

a jz j �→
∑

j

a j).

Then I gives a filtration {I p}p of Q[z, z−1]. By the inclusion map Q[z, z−1] ↪→ Q[[Z]],
the filtration {FZ

p }p restricts to {I p}p. Moreover, we have a natural isomorphism Q[[Z]] �
lim←−−p
Q[z, z−1]/I p.
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Motivated by the formula (3), we define a Q-linear map μ̂ : Q[z, z−1]→ Q[[X, Y]] by

(5) μ̂(zk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∑k

i=1 eiXe(k−i)Y (k > 0)

0 (k = 0)∑|k|−1
i=0 e−iXe(k+i)Y (k < 0).

From the definition of μ̂ it is easy to see that

(e−XeY − 1)μ̂(zk) = ekX − ekY , k ∈ Z.
Therefore, we have

(6) (e−XeY − 1)μ̂( f (z)) = f (eX) − f (eY)

for any Laurent polynomial f (z) ∈ Q[z, z−1]. Consider

Φ(X, Y) :=
∞∑

i=0

Bi

i!
(−X + Y)i.

Then we have (e−XeY − 1)Φ(X, Y) = −X + Y . Multiplying Φ(X, Y) to both sides of (6), we
have

(7) (−X + Y)μ̂( f (z)) = ( f (eX) − f (eY))Φ(X, Y)

for any f (z) ∈ Q[z, z−1].

Lemma 1. There is a unique continuous extension μ̂ : Q[[Z]] → Q[[X, Y]] of the map μ̂
in (5).

Proof. It is sufficient to prove that μ̂(I p) ⊂ FX,Y
p−1 for any p ≥ 1. Suppose f (z) ∈ I p. Then

f (eX) and f (eY) lie in FX,Y
p . This means that the right hand side of (7) is an element of FX,Y

p .
Therefore, μ̂( f (z)) ∈ FX,Y

p−1. �

Now for each k ≥ 1 we can put f (z) = (log z)k = Zk in (7), and we obtain

(−X + Y)μ̂(Zk) = (Xk − Yk)Φ(X, Y).

This shows that μ̂(Zk) ∈ FX,Y
k−1. Setting k = 1, we have

(8) μ̂(Z) = −Φ(X, Y) = −
∞∑

i=0

Bi

i!

i∑
j=0

(−1) j
(
i
j

)
X jYi− j.

This formula is essentially the same as the assertion of Theorem 2:
Proof of Theorem 2. We identify the ring Q[[X, Y]] with the complete tensor product

Q[[Z]]⊗̂Q[[Z]] by the map X �→ Z⊗̂1 and Y �→ 1⊗̂Z. Then the computation (8) implies

μ̂(log z) = −
∞∑

m=0

Bm

m!

m∑
p=0

(−1)p
(
m
p

)
(log z)p ⊗̂ (log z)m−p.(9)

From (3) and (5) it follows that the substitution z �→ γ commutes with μ and μ̂. Thus we
obtain (4). �
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Further, by expanding the left hand side of (8) in terms of μ̂(zk)’s modulo higher degree
terms, we have the following:

Proposition 1. Let m, n, a be integers satisfying 0 ≤ a ≤ m ≤ n. Then it holds that

Bm = (−1)a
n+1∑
k=1

(−1)k+1

k

(
n + 1

k

) ⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑
i=1

ia(k − i)m−a + δa,mkm

⎤⎥⎥⎥⎥⎥⎥⎦ .
Here δa,m is the Kronecker delta.

Proof. In what follows, ≡means an equality in Q[[X, Y]] modulo FX,Y
n+1. For k = 1, . . . , n+

1, we have

(10) μ̂(zk) = μ̂(ekZ) =
∞∑

i=1

ki

i!
μ̂(Zi) ≡

n+1∑
i=1

ki

i!
μ̂(Zi).

Consider the square matrix D = (Dki)k,i of order n + 1, where Dki = ki/i!. Then D is
invertible since det D is a non-zero multiple of Vandermonde’s determinant det(ki−1)k,i. The
inverse matrix of D has the first row (a1, . . . , an+1), where

ak =
(−1)k+1

k

(
n + 1

k

)
.

(To see this, for instance, one can use Lemma 2 below to get (a1, . . . , an+1)D = (1, . . . , 0).)
From (10) we have

(11) μ̂(Z) ≡
n+1∑
k=1

akμ̂(zk) =
n+1∑
k=1

(−1)k+1

k

(
n + 1

k

)
μ̂(zk).

Furthermore, for k = 1, . . . , n + 1, from (5) we have

(12) μ̂(zk) = −
k−1∑
i=1

∞∑
a,b=0

ia(k − i)b

a!b!
XaYb −

∞∑
a=0

ka

a!
Xa.

By (11) and (12), the coefficient of XaYm−a in μ̂(Z) is

n+1∑
k=1

(−1)k

k

(
n + 1

k

) ⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑
i=1

ia(k − i)m−a

a!(m − a)!
+ δm,a

km

m!

⎤⎥⎥⎥⎥⎥⎥⎦ .
On the other hand, by (8), this coincides with

(−1)a+1 Bm

m!

(
m
a

)
=

(−1)a+1

a!(m − a)!
Bm.

This completes the proof. �

Now, we can derive Theorem 1 from Proposition 1 by applying the following lemma.
Although it might be well known, we give its proof for the sake of completeness.

Lemma 2. Let m, n be integers satisfying 0 ≤ m ≤ n. Then it holds that

n+1∑
k=1

(−1)k
(
n + 1

k

)
km =

⎧⎪⎪⎨⎪⎪⎩0 if m ≥ 1,

−1 if m = 0.
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Proof. Set f (x) := (ex − 1)n+1. Since m ≤ n, the coefficient of xm in the series expansion
of f (x) is zero.

On the other hand, we compute

f (x) =
n+1∑
k=0

(−1)n+1−k
(
n + 1

k

)
ekx

= (−1)n+1

⎡⎢⎢⎢⎢⎢⎢⎣
n+1∑
k=1

(−1)k
(
n + 1

k

)
ekx + 1

⎤⎥⎥⎥⎥⎥⎥⎦
= (−1)n+1

⎡⎢⎢⎢⎢⎢⎢⎣
n+1∑
k=1

(−1)k
(
n + 1

k

) ∞∑
a=0

ka

a!
xa + 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since the coefficient of xm in the last expression is equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n+1

m!

n+1∑
k=1

(−1)k
(
n + 1

k

)
km if m ≥ 1,

(−1)n+1

⎡⎢⎢⎢⎢⎢⎢⎣
n+1∑
k=1

(−1)k
(
n + 1

k

)
+ 1

⎤⎥⎥⎥⎥⎥⎥⎦ if m = 0,

the assertion follows. �

4. Another proof of Theorem 1

4. Another proof of Theorem 1
Introducing a generating function of two variables, we give another self-contained proof

of Theorem 1. Since we have Lemma 2, it is sufficient to prove Proposition 1.
Let f (x, y) and g(x, y) be functions in variables x and y defined by

f (x, y) :=
∫ y

x
(et − 1)n+1dt, and g(x, y) :=

f (x, y)
ey−x − 1

.

We will examine the coefficient of xaym−a in the series expansion of g(x, y).
First we compute f (x, y) as follows:

f (x, y) =
∫ y

x
(et − 1)n+1dt

=

∫ y

x

n+1∑
k=0

(−1)n+1−k
(
n + 1

k

)
ektdt

= (−1)n+1
n+1∑
k=1

(−1)k

k

(
n + 1

k

)
(eky − ekx) + (−1)n+1(y − x).

Since

eky − ekx

ey−x − 1
=

ekx(ek(y−x) − 1)
ey−x − 1

=

k−1∑
i=1

eixe(k−i)y + ekx,
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we can compute g(x, y) as follows:

g(x, y) =
f (x, y)

ey−x − 1

=(−1)n+1
n+1∑
k=1

(−1)k

k

(
n + 1

k

)
(eky − ekx)
ey−x − 1

+ (−1)n+1 y − x
ey−x − 1

=(−1)n+1
n+1∑
k=1

(−1)k

k

(
n + 1

k

) ⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑
i=1

eixe(k−i)y + ekx

⎤⎥⎥⎥⎥⎥⎥⎦
+ (−1)n+1

∞∑
b=0

Bb

b!
(y − x)b.

Then using the identities:

eixe(k−i)y =

∞∑
b,c=0

ib(k − i)c

b!c!
xbyc and ekx =

∞∑
b=0

kb

b!
xb,

we see that the coefficient of xaym−a in g(x, y) is given by

(−1)n+1
n+1∑
k=1

(−1)k

k

(
n + 1

k

) ⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑
i=1

i a

a!
(k − i)m−a

(m − a)!
+ δa,m

km

m!

⎤⎥⎥⎥⎥⎥⎥⎦
+ (−1)n+1+a Bm

m!

(
m
a

)
.

This is equal to ((−1)n+1+a/m!)
(

m
a

)
times

(13) (−1)a
n+1∑
k=1

(−1)k

k

(
n + 1

k

) ⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑
i=1

i a(k − i)m−a + δa,mkm

⎤⎥⎥⎥⎥⎥⎥⎦ + Bm.

Secondly, we expand g(x, y) in a different way. Put g1(x, y) = f (x, y)/(y − x). Then we
have

g(x, y) =
f (x, y)
y − x

y − x
ey−x − 1

= g1(x, y)
∞∑

b=0

Bb

b!
(y − x)b.

Writing (et − 1)n+1 =
∑

i≥n+1 aiti, we have

f (x, y) =
∫ y

x
(et − 1)n+1dt =

∑
i≥n+1

ai

i + 1
(yi+1 − xi+1).

Thus the series expansion of g1(x, y) has all terms of degree ≥ n + 1, so does that of g(x, y).
In particular, the coefficient of xaym−a in this expansion is zero. Therefore, the expression
(13) is zero, and we obtain Proposition 1. �
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