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Abstract
The word type number of an algebra means classically the number of isomorphism classes

of maximal orders in the algebra, but here we consider quaternion hermitian lattices in a fixed
genus and their right orders. Instead of inner isomorphism classes of right orders, we consider
isomorphism classes realized by similitudes of the quaternion hermitian forms.The number T
of such isomorphism classes are called type number or G-type number, where G is the group
of quaternion hermitian similitudes. We express T in terms of traces of some special Hecke
operators. This is a generalization of the result announced in [5] (I) from the principal genus to
general lattices. We also apply our result to the number of isomorphism classes of any polarized
superspecial abelian varieties which have a model over Fp such that the polarizations are in a
”fixed genus of lattices”. This is a generalization of [8] and has an application to the number of
components in the supersingular locus which are defined over Fp.

1. Introduction

1. Introduction
First we review shortly the classical theory of Deuring and Eichler, and then explain how

this will be generalized to quaternion hermitian cases. Let B be a quaternion algebra central
over an algebraic number field F and fix a maximal order O of B. The class number H of B
is the number of equivalence classes of left O-ideals a up to right multiplication by B×. Any
maximal order of B is isomorphic (equivalently B×-conjugate) to the right order of some
left O-ideal a, and the number of such isomorphism classes is called the type number T .
Obviously T ≤ H and the formula for H and T are known by Eichler, Deuring, Peters, and
Pizer, as a part of the trace formula for Hecke operators on the adelization B×A (called Brandt
matrices traditionally), and also several explicit formulas have been written down (See [1],
[3], [2], [12], [13]). Now for a fixed prime p, an elliptic curve E defined over a field of
characteristic p is called supersingular if End(E) is a maximal order of a definite quaternion
algebra B over Q with discriminant p. The class number of B is equal to the number of
isomorphism classes of supersingular elliptic curves E over an algebraically closed field.
All such curves E have a model defined over Fp2 and the number of E which have a model
over Fp is known to be equal to 2T − H (Deuring [1]). But for n ≥ 2, the class number of
Mn(B) is one if F = Q by the strong approximation theorem and all the maximal orders of
Mn(B) are conjugate to Mn(O), so there is nothing to ask. Instead, we define G to be the
group of similitudes of a quaternion hermitian form, and GA the adelization. We fix a left
O-lattice L in Bn and consider the GA-orbit of L in Bn. Such a set of global lattices is called
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a genus (L) determined by L. The number h() of G-orbits in  = (L) is called the class
number of  and this is a complicated object. (For some explicit formulas, see [5] (I), (II)).
Now take a complete set of representatives of classes L = L1, . . . , Lh in (L). Define the
right order Ri of Mn(B) by

Ri = {g ∈ Mn(B); Lig ⊂ Li}.
These are maximal orders. We say that Ri and Rj have the same type if Ri = a−1Rja for
some a ∈ G. We denote this relation by Ri �G Rj. The number T of types in {Ri : 1 ≤ i ≤ h}
is called a type number of (L). We give a formula to express T in terms of traces of Hecke
operators defined by some two sided ideals of R1 (Theorem 3.6) under a general setting on
F, B, and quaternion hermitian forms.

Now let E be a supersingular elliptic curve defined over Fp. (Such a curve always exists.)
The abelian variety A = En is called superspecial, and it has a standard principal polarization
φX associated with a divisor X =

∑
a+b=n−1 Ea×{0}×Eb. For any polarization λ of A, the map

φ−1
X λ gives a positive definite quaternion hermitian matrix in End(A) = Mn(O) for a maximal

orderO of the definite quaternion algebra B over Q with discriminant p, and we can define a
genus (φ−1

X λ) of lattices to which φ−1
X λ belongs. We denote by (λ) the set of polarizations

μ of A such that φ−1
X μ ∈ (φ−1

X λ). We fix λ and denote the class number and the type number
of (φ−1

X λ) by H and T respectively. Then the number of isomorphism classes of polarized
abelian varieties (En, μ) with μ ∈ (λ) is H and the number of those which have models over
Fp is equal to 2T − H (Theorem 4.3). As an application, we can show that the number of
irreducible components of the supersingular locus S n,1 in the moduli of principally polarized
abelian varieties n,1 which have models over Fp is equal to 2T −H where H and T are class
numbers and type numbers of the principal genus (resp. the non-principal genus) when n is
odd (resp. n is even) (Theorem 4.6).

By the way, for a prime discriminant, an explicit formula for T for the principal genus for
n = 2 has been given in [8]. The formulas for T for the non-principal genus for n = 2 will be
given in a separate paper [6]. Together with the formula in [5] (I), (II), an explicit formula
for 2T − H for n = 2 for any genera of maximal lattices will be given there.

Acknowledgment. The author thanks Professor F. Oort for his deep interest in the theory
and for explaining to him a theory of supersingular locus in the moduli. He also thanks Pro-
fessor Chia-Fu Yu and Academia Sinica in Taipei for giving him an excellent circumstance
to finish this paper and for their kind hospitality.

2. Fundamental definitions

2. Fundamental definitions
We review several fundamental things about quaternion hermitian forms. For the claims

without proofs, see [14]. Let F be an algebraic number field which is a finite extension of
Q. Let B be any quaternion algebra over F, not necessarily totally definite. For any α ∈ B,
we denote by Tr(α) and N(α) the reduced trace and the reduced norm over F, respectively.
We denote by α the main involution of B over F, so Tr(α) = α + α, N(α) = αα. A non-
degenerate quaternion hermitian form f on Bn over B is defined to be a map f : Bn×Bn → B
such that f (ax + by, z) = a f (x, z) + b f (y, z) for a, b ∈ B, f (y, x) = f (x, y), and f (x, Bn) = 0
implies x = 0. For any n1 × n2 matrix b = (bi j) ∈ Mn1n2 (B), we write tb = (b ji). It is
well-known that, by a base change over B, we may assume that
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f (x, y) = xJy∗ (x, y ∈ Bn),

where J = diag(ε1, . . . , εn) is a non-degenerate diagonal matrix in Mn(F). For any place
v of F, we denote by Fv the completion at v. We denote by H the division quaternion
algebra over R. Equivalence classes of non-degenerate quaternion hermitian forms over H
are determined by the signature of the forms. More precisely, if we denote by v1, . . . , vr the
set of all infinite places of F such that Bv = B ⊗F Fv is a division algebra, then the forms
f on Bn are equivalent under the base change over B if and only if their embeddings to the
maps on Bn

vi
are equivalent over Bvi for all vi (1 ≤ i ≤ r). If v is a finite place of F, then any

non-degenerate quaternion hermitian forms are equivalent under the base change over Bv.
So for a finite v, we may change to J = 1n locally by a base change over Bv. We fix f once
and for all. We define a group of similitudes with respect to f by

G = {g ∈ GLn(B) = Mn(B)×; gJ tg = n(g)J for some n(g) ∈ F×}
and call this a quaternion hermitian group with respect to f . If we write gσ = Jg∗J−1, then
the condition g ∈ G is written simply as ggσ = n(g)1n. For any place v, we put

Gv = {g ∈ Mn(Bv); ggσ = n(g)1n, n(g) ∈ F×v }
where Bv = B⊗F Fv. We denote by FA and GA the adelizations of F and G, respectively. For
c ∈ F or FA, it is clear that c1n ∈ G or GA.

We denote by o the ring of integers of F. We fix a maximal order O of B. An o-module L
in Bn such that L ⊗o F = Bn is called a left O-lattice if it is a left O-module. For any finite
place v of F, we denote by ov the v-adic completion of o and put Lv = L ⊗o ov. We say that
left O-lattices L1 and L2 belong to the same class if L1 = L2g for some g ∈ G. We say that
L1 and L2 belong to the same genus if L1,v = L2,vgv for some gv ∈ Gv for all finite places v
of F. We fix a left O-lattice L and denote by (L) the set of left O-lattices belonging to the
same genus as L and call this a genus of L. In other words, if we put

Lg =
⋂

v: finite places

(Lvgv ∩ Bn)

for any g = (gv) ∈ GA, then we have

(L) = {Lg; g ∈ GA}.
We fix a left O-lattice L. For any finite place v, we define

Uv = U(Lv) = {u ∈ Gv; Lv = Lvu}
and write U = G∞

∏
v<∞Uv, where G∞ is the product of all Gv over the archimedean places

v. Then the class number h of (L) is equal to |U\GA/G|, which is known to be finite. Now
we write GA =

⋃h
i=1 UgiG (disjoint), where we assume that g1 = 1. We write Ov = O ⊗o ov.

For 1 ≤ i ≤ h, we define left O-lattices Li by Li = Lgi. The ring

Ri = {b ∈ Mn(B); Lib ⊂ Li}
is called the right order of Li. This is an maximal order of Mn(B), since for any prime v, we
have Mv = O

n
vhp for some hp ∈ GLn(Bv) (where we can take hv = 1 for almost all v), so

Ri,v = Ri ⊗o ov = h−1
v Mn(Ov)hv are maximal orders for any finite places v. For any order R of



372 T. Ibukiyama

Mn(B) and g = (gv) ∈ GA, we define g−1Rg by

g−1Rg =
⋂
v<∞

g−1
v Rvgv ∩ Mn(B).

So if we write R = R1 (where we chose g1 = 1), then Ri = g
−1
i Rgi. We say that Ri and Rj

have the same type (or G-type) if a−1Ria = Rj for some a ∈ G. We denote this relation by
Ri �G Rj. The number of equivalence classes in {R1, . . . ,Rh} in this sense is called the type
number T of (L). When n = 1, since G = B× and GA = B×A, this is nothing but the type
number in the classical sense.

Now we give a complete set of representatives of local equivalence classes of quaternion
hermitian lattices for finite places. First we show an easy result that for a finite place v, left
Ov-lattices correspond to quaternion hermitian matrices. We denote by GLn(Ov) the group
of nonsingular elements u in Mn(Ov) such that u−1 ∈ Mn(Ov). We say that X ∈ Mn(B) is a
quaternion hermitian matrix if X = X∗. We say that two hermitian matrices X1, X2 ∈ Mn(Bv)
are equivalent if there exists a u ∈ GLn(Ov) such that uX1u∗ = mX2 for some m ∈ F×v . We
say that two left Ov-lattices L1 and L2 are Gv-equivalent if L1g = L2 for some gv ∈ Gv.

Lemma 2.1. The set of Gv-equivalence classes of left Ov-lattices and the set of equiva-
lence classes of hermitian matrices in Mn(Bv) correspond bijectively.

Proof. Take J as before. Since N(B×v ) = F×v for any finite place v, there exists a diagonal
matrix J1 ∈ GLn(Bv) such that J = J1

t J1 and we may assume that J = 1n. But to avoid any
likely confusion, we keep using a general J here in the proof. For any finite place v, it is
clear that any Ov-lattice Lv may be written as Lv = On

vh with h ∈ GLn(Bv) by the elementary
divisor theorem. We define a map φ by φ(Lv) = hJ th. The equivalence class of the image
does not depend on the choice of h. If On

vh1g = O
n
vh2 for g ∈ Gv, then we have uh1g = h2

for some u ∈ GLn(Ov). This means that

n(g)uh1Jh∗1u∗ = uh1gJg∗h∗1u∗ = h2Jh∗2.

So φ induces a map from a Gv-equivalence class to a class of hermitian matrices. The map is
surjective. Indeed for any hermitian matrix X ∈ GLn(Bv), there exists an x ∈ GLn(Bv) such
that X = xx∗, so if we put hJ1 = x for J1 such that J1J∗1 = J, then we have φ(On

vh) = X. The
map is injective. Indeed, if uh1Jh∗1u∗ = mh2Jh∗2 for some m ∈ Fv, then g = h−1

2 uh1 ∈ Gv with
n(g) = m and we have On

vh2g = O
n
vh1. �

For a finite place v, we denote by pv a prime element of ov. First we consider the case
when Bv is division. When Bv is a division quaternion algebra, let Ov be the maximal order
of Bv and π a fixed prime element of Ov such that NBv/Fv

(π) = pv and π2 = −pv.

Proposition 2.2. Let Bv be a division quaternion algebra and H = H∗ ∈ Mn(Bv) be a
quaternion hermitian matrix. Then there exists a u ∈ GLn(Ov) such that

uHu∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 0 · · · 0

0 A2 0
...

... 0
. . .

...

0 0 · · · Ar

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where Ai = pei
v or

Ai = pei
v

(
0 π

π 0

)
.

Proof. We prove this by induction of the size of H. Multiplying by a power of pv, we
may assume that H ∈ Mn(Ov). Assume that the Ov ideal spanned by the components hi j of
H = (hi j) is πeOv. By replacing H by p−[e/2]

v H, we may assume that e = 0 or e = 1. First
assume that e = 0. Then some component of H is in O×v . If a diagonal component belongs
to O×v , then by permuting the rows and columns, we may assume that the (1, 1) component
h11 belongs to O×v . Since H = H∗, this means h11 ∈ o×v . Since we have N(O×v ) = o×p , by
changing H to εHε∗ for ε ∈ O×v with N(ε) = h−1

11 , we may assume that h11 = 1. Denote by ei j

the n × n matrix whose (i, j) component is 1 and whose other components are 0. Then if we
put u1 = 1n −∑n

i=2 hi1ei1, where we write H = (hi j), obviously u1 ∈ GLn(Ov) and we have

u1Hu∗1 =
(
1 0
0 H1

)
.

So we reduce to the matrix H1 of size n − 1. If all the diagonal components belong to pvov
and there exists some off-diagonal component belonging to O×v , then, by permuting the rows
and columns, we may assume that the (1, 2) component is h12 = ε ∈ O×v . We write h11 = pvt
and h22 = pvs with t, s ∈ ov. If we put u2 = 1n + be12 with b ∈ Ov, then u2 ∈ GLn(Ov) and
the (1, 1) component of uHu∗ is given by

pvt + pvsN(b) + Tr(bε).

Since it is well known that Tr(Ov) = ov (e.g. the unramified extension of Fv contains an
integral element whose trace is one), we take b = ε0ε

−1 for an element ε0 ∈ Ov such that
tr(ε0) = 1. Since 1 + pvt + pvsn(b) ∈ o×v , we reduce to the previous case. Secondly we
assume that e = 1. Then all the diagonal components belong to pvov and changing rows and
columns, we may assume that h12 = πε with ε ∈ O×v . We assume that h11 = pe

vt0 with e ≥ 1
and t0 ∈ o×v and h22 = pvs with s ∈ ov. Again by v1 = 1n + b1e12, the (1, 1) component of
v1Hv∗1 is given by pe

vt0 + pvsN(b1) + Tr(πεb1). If we put b1 = pe−1
v ε−1πε0 with ε0 ∈ Ov such

that Tr(ε0) = −t0, then we have

pe
vt0 + pvsN(b1) + Tr(πεb1) = pe

v(t0 + Tr(ε0)) + sp2e
v N(ε−1ε0) = p2e

v sN(ε−1ε0).

This is divisible by p2e
v . Since Tr(πOv) = pvov, we see that ε0 ∈ O×v and b1 ∈ pe−1πO×v .

Repeating the same process, we can take vi = 1 + bie12 such that the (1, 1) component of
vivi−1 · · · v1Hv∗1 · · · v∗i is of arbitrary high pv-adic order. Since the π-adic order of bi mono-
tonically increases, the limit limi→∞ vi · · · v1 converges to v ∈ GLn(Ov) and we see that the
(1, 1) component of vHv∗ is zero. By these changes, the (1, 2) components always belong to
πO×v , so we may assume that h11 = 0 and h12 = πε2 ∈ πO×v . By taking the diagonal matrix
A0 = diag(1, ε−1

2 , 1 . . . , 1) ∈ GLn(Ov) and A∗0HA0, we may assume that h12 = π. So now we
can assume that the diagonal block of H of (i, j) components with 1 ≤ i, j ≤ 2 is given by(

0 π

π pvs

)

We have
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(
1 0
b 1

) (
0 π

π pvs

) (
1 b
0 1

)
=

(
0 π

π pvs + Tr(bπ)

)
.

Since Tr(πOv) = pvov, we can take b ∈ Ov such that pvs + Tr(bπ) = 0, so we may assume
that s = 0. Now we will show that we can change H so that the components of the first and
the second row vanish except for the (1, 2) and (2, 1) components. Since we assumed that
e = 1, all the components belong to πOv, and if we put

w = 1n −
n∑

j=3

π−1h2 je1 j −
n∑

j=3

π−1h1 je2 j,

then w ∈ GLn(Ov) and we have

w∗Hw =
(
H1 0
0 H2

)

with H1 =

(
0 π

π 0

)
, so the claim for H reduces to the claim for H2. �

For any subset W of GA, we put

n(W) = {n(w) ∈ F×A; w ∈ W}.
Corollary 2.3. For any finite place v, let Lv be a left Ov-lattice and define Uv as before as

a group of elements g ∈ Gv such that Lvg = Lv. Then we have n(Uv) = o×v .

Proof. First we show that n(Uv) ⊂ o×v . Assume that g ∈ Uv and ggσ = n(g)1n. Since
Lvg = Lv and Lv is a free ov-module of finite rank, the characteristic polynomial of the
representation of g is monic integral if we identify Bv with F4

v . Since the characteristic
polynomial of gσ = Jg∗J−1 is the same as that of g, this is also monic integral. In particular,
the determinants of g and gσ in this representation are integral. So n(g)4n is integral, and so
n(g) is also integral. Since Lv = Lvg−1, this is also true for n(g)−1. So we have n(g) ∈ o×v .
Next we show the converse. First we assume that Bv is division. We take h ∈ GLv(Bp) such
that Lv = Onhv and put H = hvJ thv. Then for any m ∈ o×v , we have an element α ∈ GLn(Ov)
such that αHα∗ = mH. Indeed, we have uHu∗ = diag(A1, . . . , Ar) for some u ∈ GLn(Ov) as
in Proposition 2.2. Take bi ∈ O×v such that N(bi) = m, then if Ai = pe

v , we have biAib∗i = mAi.

If Ai =

(
0 π

π 0

)
, then Ov is realized as Ov = oun

v + o
un
v π where π2 = −p and oun

v is a subring of

Ov, which is isomorphic to the maximal order of the unique unramified quadratic extension
of Fv. Here for b ∈ oun

v , we have bπ = πb. We have N((oun
v )×) = o×v by local class field

theory. So taking b ∈ (oun
v )× ⊂ O×v with N(b) = m, put

Ci =

(
b 0
0 b

)
.

Then

Ci

(
0 π

−π 0

)
C∗i =

(
0 bπb
−bπb 0

)
= m

(
0 π

−π 0

)
.

So taking a diagonal matrix v consisting of diagonal blocks bi and Ci, we have vuHu∗v∗ =
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muHu∗. So by H = hvJh∗v , we have h−1
v vuhv ∈ Gp and n(h−1vuh) = m. We also have

Lvh−1vuhv = On
v vuhv = On

vhv = Lv, so h−1
v vuhv ∈ Uv. Next assume that Bv = M2(Fv). In

this case, by virtue of Shimura [14] Proposition 2.10, there exists an element X ∈ GLn(Bv)
satisfying XX∗ = 1n and fractional left Ov-ideals bi such that Lv = (b1, . . . , bn)X. Let m be
any element in o×v . we take J1 = diag(u1, . . . , un) such that J1

t J1 = J. Since the right orders
Oi of bi are again maximal orders which are all conjugate to M2(ov), there exist αi ∈ uiO

×
i u−1

i
for each 1 ≤ i ≤ n such that N(αi) = m. Put g = X−1J−1

1 diag(α1, . . . , αn)J1X. Then we have

Lvg = (b1u−1
1 α1, . . . , bnu−1

n αn)J1X = (b1u−1
1 , . . . , bnu−1

n )J1X = Lv.

So we have g ∈ Uv and gJg∗ = mJ. So m ∈ n(Uv). �

3. G-type numbers and Hecke operators

3. G-type numbers and Hecke operators3.1. A formula for a type number.
3.1. A formula for a type number. We fix a leftO-lattice L in Bn. We define U ⊂ GA by

the group of stabilizers of L as before and fix representatives L1, . . . , Lh of classes in (L)
and right orders Ri of Li. We set L1 = L and R1 = R. We denote by Lv and Rv the tensor of L
and R over o and ov, respectively. First, to define some good Hecke operators, we see there
exist some special elements in Rv ∩Gv. When Bv is division, we fix an element π ∈ Ov with
π2 = −pv as before. First we recall the following well-known fact.

Lemma 3.1. When Bv is division, any two sided ideal of Mn(Ov) in Mn(Ov) is given
by πeMn(Ov) for some integer e ≥ 0. When Bv = M2(Fv), then any two sided ideal of
Mn(Ov) � M2n(ov) in Mn(Ov) is given by pe

vMn(Ov) for some integer e ≥ 0.

The proof is well-known and straightforward by using the elementary divisor theorem
in both cases and omitted here. It is also clear that for any u1, u2 ∈ GLn(Ov), we have
u1π

eu2Mn(Op) = πeMn(Op) when Bp is division.

Proposition 3.2. When Bv is division, there exists an element ωv ∈ Rv ∩ Gv such that
ω2
v = −pv1n, ωvω∗v = pv1n and any two sided ideal of Rv in Rv is given by ωe

vRv for some
e ≥ 0.

Proof. First we show that there exists an element ωv ∈ Rv such that ω2
v = −pv1n, ωvωσv =

pv1n, and ωvRv = Rvωv. Take hv ∈ GLn(Bv) such that Lv = On
vhv and put H = hvJ thv. By

changing a representative of the Gv-equivalence class of Lv by multiplying an element of ov,
we may assume that Lv ⊂ On

v and H ∈ Mn(Ov). Then by Proposition 2.2, there exists some
u ∈ GLn(Ov) such that all the components of uHu∗ are in ov ∪ πov. So we have π(uHu∗) =
(uHu∗)π, so π(uHu∗)π = puHu∗. So if we put ωv = h−1

v u−1πuhv, then we have ωvJω∗v = pvJ
and ω2

v = −pv1n. We also have On
vhvωv = O

n
vu
−1πuhv = On

v πuhv ⊂ On
vuhv = Ovhv, so

ωv ∈ h−1
v Mn(Ov)hv = Rv. We also have Rvωv = h−1

v Mn(Ov)u−1πuhv = h−1
v u−1Mn(Ov)πuh =

h−1
v u−1πuMn(Ov)hv = ωvRv, so Rvωv is a two sided ideal. By using Lemma 3.1, any two

sided ideal of Rv is given by h−1
v u1π

eu2hvRv for some e ≥ 0 and any u1, u2 ∈ GLn(Ov) and
this is equal to ωe

vRv. �

We denote by d the ov-ideal defined as the product of the prime ideals pv of ov such that
Bv is division. This is called the discriminant of B. We say that pv is ramified when Bv
is division and split when Bv = M2(Fv). We fix ωv for pv|D as above and for any integral



376 T. Ibukiyama

ideal m|d of ov, we define ω(m) = (gv) ∈ GA by setting gv = 1 for all archimedean places
v and finite places v such that pv � m, and gv = ωv for any places v such that pv|m. We put
F∞ =

∏
v : infinite Fv where v runs over all archimedean places of F. We choose a complete

set c1, . . . , ch0 of representatives of F×A/F
× · F×∞

∏
v o
×
v . This set of course corresponds to a

complete set of representatives of ideal classes of F and h0 is the class number of F. By
embedding FA1n ⊂ GA, we regard ci as an element of GA. We also have (F×∞

∏
v o
×
v )1n ⊂ U

for any O-lattice L. We have

Proposition 3.3. (1) Ri and Rj have the same G-type if and only if c−1
l ω(m)−1gi ∈ Ug jG

for some m|d and some cl.
(2) Assume that the class number of F is one. Then for a fixed m|d, if ω(m)−1gi ∈ Ug jG,
then ω(m)−1g j ∈ UgiG.

Proof. First we assume that Ri �G Rj, so we have a−1Ria = Rj for some a ∈ G. This
means that a−1g−1

i Rgia = g−1
j Rg j, so by definition, we have a−1g−1

i,v Rpgi,va = g j,vRpg j,v, where
gi,v and g j,v are v-adic components of gi and g j. So Rvgi,vag−1

j,v is a two sided ideal of Rv. So
if Bv is division, then gi,vag j,v = ω

ev
v u with u ∈ Uv. If Bv = M2(Fv), then gi,vag−1

j,v = pev
v u with

u ∈ Uv. Since gi,vag−1
j,v is the v-component of an element in GA, we have gi,vag−1

j,v ∈ Uv for
almost all v. So ev � 0 only for the finitely many v. We denote by m1 an element of F×A such
that v component is pev

v for split primes pv, and p[ev/2]
v for ramified primes pv, where [x] is the

least integer which does not exceed x. For some l with 1 ≤ l ≤ h0, we have m1 = u0clc with
u0 ∈ F∞

∏
v o
×
v and c ∈ F×. If we define m as a product of ramified pv such that ev is odd, we

see giac−1g−1
j ∈ ω(m)clU, so c−1

l ω(m)−1gi ∈ Ug jG. Next we prove the converse. We assume
that c−1

l ω(m)−1gi ∈ Ug jG for some m|d and l. Then gi = ω(m)clug ja for some u ∈ U and
a ∈ G. Then we have

Ri = g
−1
i Rgi = a−1g−1

j u−1c−1
l ω(m)−1Rω(m)clug ja.

We have ω(m)−1Rω(m) = R since conjugation is defined locally. Since cl1n is in the center of
Mn(BA) and u−1Ru = R by definition of U, we have a−1Rja = Ri, hence we have proved (1).
Now if ω(m)−1gi ∈ Ug jG for some m|d, then since ω(m)U = Uω(m) by definition of ω(m),
we have gi ∈ ω(m)Ug jG = Uω(m)g jG, hence ω(m)g j ∈ UgiG. Since ω(m)2 ∈ FA1n and we
assumed that the class number of FA is one, we see thatω(m)2 = u0c for some u0 ∈ F∞

∏
v o
×
v

and c ∈ F×. We have ω(m) = ω(m)−1u0c and we have ω(m)−1g j ∈ u−1
0 UgiGc−1 = UgiG.

�

Now we review the definition of the action of Hecke operators on functions on the double
coset U\GA/G. In particular when G∞ is compact, this is nothing but the space of automor-
phic forms of trivial weight (See [4] and [5] (I)). We define the spaceM0(U) by

M0(U) = { f : GA → C; f (uga) = f (g) for any u ∈ U, a ∈ G, g ∈ GA}.
Then for any z ∈ GA and UzU =

⋃d
i=1 ziU, the double coset acts on f (g) ∈ M0(U) by

([UzU] f )(g) =
d∑

i=1

f (z−1
i g) (g ∈ GA).

For the class number h = h() of  = (L) and 1 ≤ i ≤ h, we denote by fi the element in
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M0(U) such that fi(g) = 1 for any g ∈ UgiG and = 0 for any g ∈ Ug jG with j � i. Then
since M0(U) is the set of functions on GA which are constant on each double coset UgiG,
we see that { f1, . . . , fh} is a basis of M0(U) and h = dimM0(U). To count the type number
by traces of Hecke operators, we define Hecke operators R(mc2l ) form|d and cl for 1 ≤ l ≤ h0

by

R(mc2l ) = Uω(m)clU.

(Here we write c2l in R(∗) just because c2l ∈ F×A gives the multiplicator of the similitude cl1n

and fits the notation m.) If we denote by t the number of prime divisors of d, then there are
2th0 such operators. Since ωvRv = Rvωv, we have ωvR×v = R×v ωv and ωvUv = Uvωv. Also
cl1n is in the center of GA. So it is clear that Uω(m)clU = ω(m)clU. So these operators are
obviously commutative. By definition, this acts onM0(U) by

R(mc2l ) f = [Uω(mc2l )U] f = f (ω(m)−1c−1
l g).

By definition, we have R(mc2l ) fi = f j for the unique j such that ω(m)−1c−1
l gi ∈ Ug jG. So

R(mc2l ) induces a permutation of { f1, . . . , fh}. If c ∈ FA belongs to the trivial ideal class, then
we have U(c1n)U = (c1n)U with c ∈ F× and this acts trivially on M0(U), so the definition
of R(mc2l ) depends only on m and the class of cl. We have (Uω(m)clU)2 = Umc2l for some
m ∈ F×A and this also acts as a permutation on { f1, . . . , fh}. We also see by this that the image
of the action of the algebra of R(mc2l ) for all m and cl is a finite abelian group. As a whole,
the action of the semi-group spanned by R(mc2l ) onM0(U) is regarded as an action of a finite
abelian group Γ of order 2th0.

Now we review an easy general theory of group actions. Let Γ be a finite abelian group
acting on a finite set X (faithful or not.) We would like to count the number of the transitive
orbits of X under Γ. We denote by ρ the linear representation on the formal sum ⊕x∈XCx
associated to the action of Γ on the set X.

Lemma 3.4. The number T of transitive orbits of X by Γ is given by

T =
1
|Γ|

∑
g∈Γ

Tr(ρ(g)).

Proof. Let X =
⋃T

i=1 Xi be the decomposition into the disjoint union of transitive orbits
of Γ. Then Γ acts on Xi transitively. Fix xi ∈ Xi for each i and denote by Γi the stablizer of
xi in Γ. Then we have |Xi| = |Γ/Γi|. The stablizer of any other point γxi ∈ Xi for γ ∈ Γ is
γΓiγ

−1, but since Γ is abelian, this is equal to Γi. So Γi acts trivially on Xi. Also, any γ ∈ Γ
with γ � Γi has no fixed point in Xi. So if we denote by ρi the linear representation of Γ
associated with the action on Xi, then we have

Tr(ρi(g)) =
{ |Xi| if g ∈ Γi,

0 if g � Γi.

In other words, we have ∑
g∈Γ

Tr(ρi(g)) = |Xi||Γi| = |Γ|.

Since we have ρ =
∑T

i=1 ρi, we have
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∑
g∈Γ

Tr(ρ(g)) =
T∑

i=1

|Γ| = |Γ| × T.

Hence we prove the lemma. �
Now we come back to the G-type number.

Proposition 3.5. We have Ri �G Rj if and only if fi and f j are in the same orbit of the
action of the semi-group spanned by {R(mc2l );m|d, 1 ≤ l ≤ h0}.

Proof. This claim is obvious from Proposition 3.3. �

Theorem 3.6. The G-type number T is given by

T =
h0∑
l=1

∑
m|d

Tr(R(mc2l ))
2th0

,

where Tr means the trace of the action of the U-double cosets on M0(U).

3.2. Relation with global integral elements.
3.2. Relation with global integral elements. Interpretation of the above results in terms

of global quaternion hermitian matrices is important for a geometric interpretation. For
that purpose, we specialize the situation. From now on, we assume that F = Q and B
is a definite quaternion algebra over Q. We assume that the quaternion hermitian form is
positive definite, so J = 1n. Then gσ = g∗ = tg and n(g) > 0 for g ∈ G. For a left O-lattice
L, we define U = U(L) as before. For GA = ∪h

i=1UgiG with g1 = 1, we may assume that
n(gi) = 1 since the class number of Q is one and we have n(GA) = n(U)n(G). The set of
lattices Li = Lgi (1 ≤ i ≤ h) is a complete set of representatives of the classes in (L). We
assume n ≥ 2. Then by the strong approximation theorem on GLn(B), we can show easily
that any left O-lattice L may be written as L = Onh for some h ∈ GLn(B). We define the
associated quaternion hermitian matrix by H = hh∗. This is positive definite. We say that
two quaternion hermitian matrices H1 and H2 are equivalent if there exists u ∈ GLn(O) and
0 < m ∈ Q× such that uH1u∗ = mH2.

Lemma 3.7. Assume that n ≥ 2. By the above mapping, the set of G equivalence classes
of left O-lattices and the set of equivalence classes of positive definite quaternion hermitian
matrices correspond bijectively.

A proof is the same as in Lemma 2.1 and omitted here. For representatives L = L1, . . . , Lh

of the genus (L), where Li = Lgi, we can take hi ∈ GLn(B) such that Li = O
nhi (1 ≤ i ≤ h).

So we have Li = Lgi = Onh1gi. Then we have uhi = h1gi for some u ∈ G∞
∏

p GLn(Op), and
uhih∗i u∗ = h1h∗1. This means that the reduced norms of hih∗i and h1h∗1 are the same. Denote
by D the discriminant of B. For m|D, we define ω(m) as before. We denote by R the right
order of L as before.

Proposition 3.8. For 0 < m with m|D, the following conditions (1) and (2) are equivalent.
(1) ω(m)−1gi ∈ Ug jG.
(2) There exists α ∈ Mn(O) such that αMn(O) = Mn(O)α and αh jh∗jα

∗ = mhih∗i .

Proof. Assume (1). We have ω(m)−1gi = ug ja for some u ∈ U, a ∈ G, and gi = ω(m)ug ja.
Since all the p-adic components of ω(m) are in Rp, we have Lω(m) ⊂ L. Hence
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Li = Lgi = Lω(m)ug ja ⊂ Lg ja = Lja.

Since Li = O
nhi and Lj = O

nh j, we have Onhi ⊂ Onh ja. Hence if we put α = hia−1h−1
j

then Onα ⊂ On, so α ∈ Mn(O) and αh jh∗jα
∗ = n(a)−1hih∗i . Since we assumed n(gi) =

n(g j) = 1, we have n(a)n(u) = n(ω(m)−1). Since n(u) ∈ R×+
∏

p Z
×
p , n(ω(m)) ∈ mR×+

∏
p Z
×
p ,

and n(a) ∈ Q×+, we have n(a) = m−1, and αh jh∗jα
∗ = mhih∗i . By definition of a, we have

a−1 = g−1
i ω(m)ug j, so

a−1Rj = g
−1
i ω(m)ug j(g−1

j Rg j) = g−1
i ω(m)uRg j = g

−1
i Rω(m)ug j = g

−1
i Rgia−1 = Ria−1.

Since we have Rk = h−1
k Mn(O)hk for any k, we have a−1h−1

j Mn(O)h j = h−1
i Mn(O)hia−1, and

hia−1h−1
j Mn(O) = Mn(O)hia−1h−1

j . Since α = hia−1h−1
j by definition, we see that αMn(O) is

a two-sided ideal. Hence we have (2). Now assume (2) and define a by a−1 = h−1
i αh j. Then

a ∈ G and n(a−1) = m. By αMn(O) = Mn(O)α, n(gia−1g−1
j ) = m, and Lemma 3.1, we have

gia−1g−1
j = ω(m)u with u ∈ U. So ω(m)−1gi = ug ja ∈ Ug jG. So we have (1). �

Now for a fixed i, if there exists no j � i such that Rj �G Ri, then by Proposition 3.3, for
any j � i and m|D, we have ω(m)−1giG � Ug jG. But ω(m)−1gi ∈ GA =

⋃h
j=1 Ug jG, so we

have ω(m)−1gi ∈ UgiG for all m|D. If we assume that D = p is a prime, then Ri �G Rj if and
only if ω(m)−1gi ∈ Ug jG for m = 1 or p. So we have

Lemma 3.9. Assume that D = p is a prime. We fix i. Then there exists at most one j � i
such that R j �G Ri. If there exist such j � i, then we have ω(p)−1gi ∈ Ug jG. If Ri �G Rj

only for j = i, then ω(p)−1gi ∈ UgiG.

Proof. If there exist j and k such that j � i and k � i , then gi � Ug jG and gi � UgkG,
and if Ri �G Rj �G Rk besides, then by Proposition 3.3, we have ω(p)−1gi ∈ Ug jG and
ω(p)−1gi ∈ UgkG, hence Ug jG = UgkG so j = k. If there exist no j � i such that Ri �G Rj,
then we have ω(p)−1gi � Ug jG for any j � i. This means that ω(p)−1gi ∈ UgiG. �
So, when D = p is a prime, then the G-type of any genus is either a subset of a pair of

maximal orders or a subset of single element in {Ri; 1 ≤ i ≤ h}.

4. Models of polarizations defined over Fp

4. Models of polarizations defined over Fp4.1. Polarizations on superspecial abelian varieties.
4.1. Polarizations on superspecial abelian varieties. Let A be an abelian variety and At

the dual of A. For an effective divisor D of A, we define an isogeny φD from A to At by

φD(t) = Cl(Dt − D) (t ∈ A),

where Dt is the translation of D by t and Cl denotes the linear equivalence class of the
divisor. We say that an isogeny λ from A to At is a polarization if there exists an effective
divisor D such that λ = φD. We say that a polarization λ is a principal polarization if λ is an
isomorphism. Two polarized abelian varieties (A1, λ1) and (A2, λ2) are said to be isomorphic
if there exists an isomorphism φ : A1 → A2 such that λ1 = φ

tλ2φ, where φt is the dual map
from At

2 to At
1 associated with φ.

Let p be a prime. An elliptic curve E over a field of characteristic p such that End(E) is a
maximal order of a definite quaternion algebra B with discriminant p is called supersingular.
There exists a supersingular elliptic curve defined over Fp such that End(E) contains an
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element π with π2 = −p · idE . We fix such an E once and for all. Then we can regard π
as the Frobenius endomorphism of E and every element of End(E) is defined over Fp2 . An
abelian variety A which is isogenous to En is called supersingular. An abelian variety which
is isomorphic to En is called superspecial. It is well known that any product of various
supersingular elliptic curves are all isomorphic (Shioda, Deligne). The superspecial abelian
variety En has a principal polarization defined over Fp (See [7]). Indeed, if we take a divisor
X defined by

X =
n−1∑
i=0

Ei × {0} × En−1−i,

then the n-fold self-intersection Xn = n!, so det φX = 1, and this is defined over Fp. We
put O = End(E). Then we have identifications End(En) = Mn(O) and Aut(En) = Mn(O)× =
GLn(O). For any φ ∈ End(En), the Rosati involution is defined by φ−1

X φtφX . Then this is equal
to φ∗ under the identification of End(En) with Mn(O). In particular, if we put Hλ = φ−1

X λ

for a polarization λ, then H∗λ = Hλ and Hλ is a positive definite quaternion hermitian matrix
in Mn(O). It is easy to show that two polarized abelian varieties (En, λ1) and (En, λ2) are
isomorphic if and only if there exists an α ∈ GLn(O) such that αHλ1α

∗ = Hλ2 .
Any polarization λ of En is defined over Fp2 since φX is defined over Fp and any endomor-

phism of E is defined over Fp2 by the choice of our E. We also see that if polarized abelian
varieties (En, λ1) and (En, λ2) are isomorphic, then they are isomorphic over Fp2 since any
element of Aut(En) is defined over Fp2 . Now we denote by σ the Frobenius automorphism
of the algebraic closure Fp over Fp.

Lemma 4.1. Notation being as before, a polarized abelian variety (En, λ) has a model
defined over Fp if and only if (En, λ) and (En, λσ) are isomorphic.

Proof. Assume that there is a model (A, η) of (En, λ) defined over Fp. We write an
isomorphism (A, η) → (En, λ) by ψ. Here ψ is defined over the algebraic closure Fp of Fp.
Anyway, for any element τ ∈ Gal(Fp/Fp), we have

(En, λ) � (A, τ) = (Aτ, ητ) � (En, λτ).

So the condition is necessary. On the other hand, if ψ gives an isomorphism (En, λ) �
(En, λσ), then ψ ∈ Aut(En) is defined over Fp2 and ψσψ is an automorphism of (En, λ) since
λσ

2
= λ. Since ψσψ fixes a polarization (corresponding to a positive definite lattice), it is

well-known that this is of finite order. So (ψσψ)r = (ψψσ)r = 1 for some positive integer r,
where 1 means the identity map of En. Now we regard σ as a generator of the Galois group
Gal(Fp2r/Fp). Since ψ is defined over Fp2 , we have ψσ

2
= ψ and (ψσψ)σ

2i
= ψσψ. So if we

put f1 = 1, fσ = ψ, and fσi = ψσ
i−1
ψσ

i−2 · · ·ψ for 1 ≤ i ≤ 2r − 1, then we have

f σ
j

σi fσ j = ψσ
i+ j−1 · · ·ψσ j

ψσ
j−1 · · ·ψ = fσi+ j .

This is obvious if i + j < 2r. If 2r ≤ i + j ≤ 4r − 1, then this is equal to

ψσ
i+ j−1−2r · · ·ψσψ,

since we have

ψσ
i+ j−1 · · ·ψi+ j−2r = (ψσψ)σ

i+ j−2
(ψσψ)σ

i+ j−4 · · · = ((ψσψ)r)σ
δ

= 1,
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where δ = 0 or 1 according as i + j is even or odd. So we have fσi+ j−2r = fσi+ j and the set of
maps { fσi ; 0 ≤ i ≤ 2r − 1} satisfies the descent condition for Gal(Fp2r/Fp) (See [15]). So we
have a model over Fp. �

Proposition 4.2. Notation being the same as before, the polarized abelian varieties
(En, λ) and (En, λσ) are isomorphic if and only if α∗Hλα = pHλ for some α ∈ End(En) =
Mn(O) such that αMn(O) = Mn(O)α.

Proof. Let F be the Frobenius endomorphism of En over Fp and set F = π1n where
π is a prime element of O over p with π2 = −p. Let F1 be the Frobenius map of (En)t

over Fp. (Actually it is the same as F if we identify (En)t with En.) For a polarization
λ of En, we have λσF = F1λ by definition. In particular, since φX is defined over Fp,
we have φXF = F1φX . So we have (φ−1

X λσ)F = F(φ−1
X λ). Now assume that (En, λσ) and

(En, λ) are isomorphic. This means that there exists an automorphism φ of En such that
λσ = φtλφ. So we have φ−1

X λσ = φ−1
X φtφXφ

−1
X λφ. We have φ−1

X φtφX = φ∗, identifying
End(En) with Mn(O) and writing g∗ = tg for any g ∈ Mn(B). So if we put Hλ = φ

−1
X λ, then

we have FHλ = φ
∗HλφF. Since F∗F = p1n, we have pHλ = α

∗Hλα for α = φF. We have
αMn(O) = φFMn(O) = φMn(O)F = Mn(O)F = Mn(O)φF = Mn(O)α. So we have proved
the “only if” part. Conversely, assume that pHλ = α∗Hλα for some α ∈ Mn(O) such that
αMn(O) is a two sided ideal. Since we assumed that the two sided prime ideal of O over
p is generated by F ∈ O, it is classically well-known that any two sided ideal of Mn(O) is
given by bFr Mn(O) with positive rational number b and some non-negative integer r. So we
have α = bFrε for some ε ∈ GLn(O) = Mn(O)×. By taking the reduced norm of the both
sides of pHλ = α

∗Hλα, we see that the reduced norm N(α) of α is pn. Since N(F) = pn and
N(ε) = 1, we see that pn = b2n pnr, so b = pn(1−r)/2. Since F2 = −p, this is equal to ±Fn(1−r),
and α = φFs for some φ ∈ GLn(O). Here comparing the reduced norm, we have s = 1 and
this φ gives an isomorphism of (En, λ) to (En, λσ). �

4.2. Relation to the type number.
4.2. Relation to the type number. For any polarization λ of En, φ−1

X λ is a positive defi-
nite quaternion hermitian matrix in Mn(O). If  is the genus of quaternion hermitian lattices
to which φ−1

X λ belongs, we write  = (λ) and we say that λ belongs to  by abuse of
language. We denote by (λ) the set of polarizations of En which belong to the same genus
as λ belongs to. We denote by H(λ) and T (λ) the class number and the type number of (λ),
respectively.

Theorem 4.3. Assume that n ≥ 2 and fix a polarization λ of En. Then the number of
isomorphism classes of polarizations in (λ) is equal to H(λ). The number of isomorphism
classes of (En, μ) with μ ∈ (λ) which have a model over Fp is equal to 2T (λ) − H(λ).

Proof. The first assertion is obvious so we prove the second assertion. We define U as
the stabilizer in GA of a lattice corresponding to Hλ = φ

−1
X λ and write GA =

⋃
i UgiG. The

isomorphism classes of μ ∈ (λ) correspond bijectively to the set {gi}, so assume that μ
corresponds to gi. Write Hμ = φ

−1
X μ as before. The condition that αHμα

∗ = pHμ for some
α ∈ Mn(O) with αMn(O) = Mn(O)α is equivalent to the condition that ω(p)gi ∈ UgiG
by Proposition 3.8. The number of isomorphism classes of such μ is equal to Tr(R(p)) by
Lemma 3.9. Since T (λ) = (Tr(R(p)) + Tr(R(1)))/2 = (Tr(R(p)) + H(λ))/2, we prove the
assertion. �
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We note that even if (En, λ) has a model over Fp, it is not necessarily true that En has a po-
larization equivalent to λ defined over Fp. We give such an example below. If a polarization
λ of En is defined over Fp, this means that F(φ−1

X λ) = (φ−1
X λ)F, so the quaternion hermitian

matrix associated with λ should be realized as a matrix which commutes with π. Now when
the discriminant of B is a prime p, there are two genera of quaternion hermitian maximal
left O-lattices in Bn, the one which contains On, and the other which does not contain On.
We call the former a principal genus, denoted by pr, and the latter a non-principal genus
denoted by npr. Now we consider the case npr. If n = 2 and O contains π, then any
quaternion hermitian matrix associated with a lattice in npr is given by

H1 = m
(
pt πr
πr ps

)

with 0 < m ∈ Q, t, s ∈ Z and r ∈ O such that pts − N(r) = 1. If p = 3, the maximal order O
of B is concretely given up to conjugation by

O = Z + Z
1 + π

2
+ Zβ + Z

(1 + π)β
2

,

where π2 = −3, β2 = −1, πβ = −βπ. If H1 commutes with π, then r should be in Q(π). So
we should have 3ts − N(r) = 1 for some positive integers t, s and an element r = (a + bπ)/2
with a, b ∈ Z, a ≡ b mod 2. Here N(r) = (a2 + 3b2)/4 but we should have N(r) ≡ −1 mod 3
by the above relation. This means that a2 ≡ −1 mod 3 but this is impossible. So there is
no such polarization. On the other hand, since the class number H is 1 for this genus, and
hence the type number T is also 1, we have 2T − H = 1. More concretely, if we put

H =
(

3 π(1 + β)
−π(1 + β) 3

)
,

α =

(
β 0
0 1

) (
π 0
0 π

)
=

(
βπ 0
0 π

)
,

then H corresponds with a lattice in npr, and we have αHα∗ = 3H and αM2(O) = M2(O)α.
This means that the corresponding polarized abelian surface has a model over F3. Besides,
for any n ≥ 2, if we take [n/2] copies of H and take

Hn = H ⊥ · · · ⊥ H ⊥ p

where p appears only when n is odd, then the corresponding n-dimensional polarized abelian
variety also has a model over F3. By the way, for n = 2, we will see in [6] that 2T (npr) −
H(npr) > 0 for all p. So in the same argument, we see that

Proposition 4.4. For all primes p, there exists a polarized abelian variety, whose polar-
ization belongs to npr, that has a model over Fp.

4.3. Components of the supersingular locus which have models over Fp.
4.3. Components of the supersingular locus which have models over Fp. We denote

by n,1 the moduli of principally polarized abelian varieties and by n,1 the locus of prin-
cipally polarized supersingular abelian varieties in n,1. The author learned the following
theorem from Professor F. Oort.

Theorem 4.5 (Li-Oort[10], Oort [11], Katsura-Oort [9] ). (1) The set of irreducible com-
ponents of n,1 corresponds bijectively with equivalence classes of polarizations of En be-
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longing to pr if n is odd, and to npr if n is even, respectively.
(2) The locus n,1 is defined over Fp. Each irreducible component of n,1 is defined over
Fp2 . The irreducible component corresponding to the polarization λ in the sense of (1) has
a model defined over Fp if and only if (En, λ) has a model over Fp.

For any genus  of quaternion hermitian lattices, we denote by H() and T () the class
number and the type number of  as before. As a corollary of our previous Theorems 4.3
and 4.5 and Proposition 4.4, the following theorem is obvious.

Theorem 4.6. Assume that n ≥ 2. Then the number of irreducible components of n,1

which have models over Fp is equal to 2T (pr) − H(pr) when n is odd and to 2T (npr) −
H(npr) when n is even. In particular, there always exists an irreducible component of n,1

defined over Fp.

Proof. Except for the last claim, the assertion has been already proved. It is obvious that
2T (pr) − H(pr) > 0 for all n, since En has a principal polarization defined over Fp. So by
Proposition 4.4 and Theorem 4.5, we have the claim. �

When n = 2, the number 2T (npr) − H(npr) is concretely given in [6] and is always
positive, as we remarked.
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