
LIPSCHITZ CHARACTERISATION OF
POLYTOPAL HILBERT GEOMETRIES

言語: English

出版者: Osaka University and Osaka City University,

Departments of Mathematics

公開日: 2024-09-09

キーワード (Ja): 

キーワード (En): 

作成者: VERNICOS, CONSTANTIN

メールアドレス: 

所属: Institut de mathematique et de modelisation de

Montpellier Universite

メタデータ

https://ocu-omu.repo.nii.ac.jp/records/2010526URL



Osaka City University 

 

LIPSCHITZ CHARACTERISATION OF 
POLYTOPAL HILBERT GEOMETRIES 

 
CONSTANTIN VERNICOS 
 

Citation Osaka Journal of Mathematics. 52(1); 215-235 
Issue Date 2015-01 
Textversion Publisher 

Right ©Departments of Mathematics of Osaka University and Osaka City University. 
DOI 10.18910/57672 

Is Identical to https://doi.org//10.18910/57672 

Relation 
The OJM has been digitized through Project Euclid platform 
http://projecteuclid.org/ojm starting from Vol. 1, No. 1. 

 
 
 

SURE:  Osaka City University Repository 
https://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository  

 

http://projecteuclid.org/ojm
https://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository


Vernicos, C.
Osaka J. Math.
52 (2015), 215–235

LIPSCHITZ CHARACTERISATION OF
POLYTOPAL HILBERT GEOMETRIES

CONSTANTIN VERNICOS

(Received May 1, 2012, revised September 5, 2013)

Abstract
We study Hilbert geometries admitting similar singularities on their boundary to

those of a simplex. We show that in an adapted neighborhood ofthose singularities,
two such geometries are bi-Lipschitz. As a corollary we prove that the Hilbert geom-
etry of a convex set is bi-Lipschitz equivalent to a normed vector space if and only
if the convex is a polytope.

Introduction and statement of results

A Hilbert geometry is a particularly simple metric space on the interior of a com-
pact convex setC modeled on the construction of the Klein model of hyperbolicgeom-
etry inside an euclidean ball. This metric happens to be a complete Finsler metric
whose set of geodesics contains the straight lines. Since the definition of the Hilbert
geometry only uses cross-ratios, the Hilbert metric is a projective invariant.

In addition to ellipsoids, a second family of convex sets play a distinct role among
Hilbert geometries: the simplexes. If the ellipsoids’ geometry is isometric to the hyper-
bolic geometry and are the only Riemannian Hilbert geometries (see D.C. Kay [14,
Corollary 1]), at the opposite side simplexes happen to be the only ones whose geom-
etry is isometric to a normed vector space (e.g. see De la Harpe [12] for the existence
and Foertsch and Karlsson [11] for the uniqueness).

Many of the recent works done in the context of these geometries focus on finding
out how close they are to the hyperbolic geometry, from different viewpoints (see, e.g.,
A. Karlsson and G. Noskov [13], Y. Benoist [1, 2] forÆ-hyperbolicity, E. Socié-Méthou
[16, 17] for automorphisms and B. Colbois and C. Vernicos [5,6] for the spectrum). It
is now quite well understood that this is closely related to regularity properties of the
boundary of the convex set. For instance if the boundary isC2 with positive Gaussian
curvature, then B. Colbois and P. Verovic [9] have shown thatthe Hilbert geometry is
bi-Lipschitz equivalent to the hyperbolic geometry.

The present work investigates those Hilbert geometries close to a norm vector space.
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Along that path it has been noticed than any polytopal Hilbert geometry can be
isometrically embedded in a normed vector space of dimension twice the number of it
faces (see B.C. Lins [15]). Then B. Colbois and P. Verovic [10] showed that in fact
no other Hilbert geometry could be quasi-isometrically embedded into a normed vector
space. Furthermore with B. Colbois and P. Verovic [8] we haveshown that the Hilbert
geometries of plane polygons are bi-Lipschitz to the euclidean plane. Even though we
saw no reason for this result not to hold in higher dimension,our point of view made
it difficult to obtain a generalisation due to the computations it involved. The present
works aims at filling that gap by giving a slightly different proofs which holds in all
dimension, with less computations, but at the cost of a longer study of simplexes.

The first main result on our paper is the following comparisontheorem around
some specific singularity on the boundary, which we callconical flag, and which can
be stated in the following rather informal way:

Theorem (Comparison Theorem 5). Let A andB be two Hilbert geometries with
a common extremal point x such that should one apply the dilations of ratio� centred
at x, as � goes to infinity the images of both convex sets would convergeto an orth-
ant. LetS be any simplex contained inA as well asB, such that x is a vertex and at
most one(n � 1)-dimensional face adjacent to x lies on the boundary of both bound-
aries ofA and B. Then insideS, the Hilbert geometries ofA and B are bi-Lipschitz
equivalent.

The precise definition of those singularities can be found inSection 1.2. As a
corollary we then get our second main theorem.

Theorem 1. Let P � Rd be a convex polytope, its Hilbert geometry(P, dP ) is
bi-Lipschitz to the d-dimensional euclidean geometry(Rd, k � k). In other words there
exist a map FW P ! R

d and a constant L> 1 such that for any two points x and y
in P,

1

L
� kF(x) � F(y)k 6 dP (x, y) 6 L � kF(x) � F(y)k.

The main idea is that a polytopal convex set can be decomposedinto pyramids
with apex its barycentre and base its faces, and then to provethat each pyramid is bi-
Lipschitz to the cone it defines. However due to the multitudeof available faces in
dimension higher than two, a reduction is needed and consists in using the barycentric
subdivision to decompose each of these pyramids into similar simplexes, and to prove
that each of these simplexes is bi-Lipschitz to the cone it defines.

The following corollary “à l” Bourbaki sums up the known characterisations of the
polytopal Hilbert geometries
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Corollary 2. LetC 2 Rd be an open convex set which does not contain any straight
line and (C, dC) its Hilbert geometry. Then the following are equivalent
(1) C is a polytopal convex domain;
(2) (C, dC) is bi-Lipschitz equivalent to an d-dimensional vector space;
(3) (C, dC) is quasi-isometric to the euclidean d-dimensional vector space;
(4) (C, dC) isometrically embeds into a normed vector space;
(5) (C, dC) quasi-isometrically embeds into a normed vector space;

The author believes that Theorem 5 should help in the bi-Lipschitz classification
of Hilbert geometries.

NOTE. Theorem 1 was found and proved with a completely different approach
by Andreas Bernig [4]. The two approaches are somewhat dual to one another: where
Bernig uses faces, we use vertices.

1. Definition of a Hilbert geometry and notations

1.1. Hilbert geometries. Let us recall that a Hilbert geometry (C, dC) is a non-
empty bounded open convex setC on Rd (that we shall callconvex domain) with the
Hilbert distancedC defined as follows: for any distinct pointsp and q in C, the line
passing throughp and q meets the boundary�C of C at two pointsa and b, such that
one walking on the line goes consecutively bya, p, q b (Fig. 1). Then we define

dC(p, q) D
1

2
ln[a, p, q, b],

where [a, p, q, b] is the cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] D
kq � ak

kp� ak
�

kp� bk

kq � bk
> 1,

with k � k the canonical euclidean norm inRd.
Note that the invariance of the cross-ratio by a projective map implies the invari-

ance ofdC by such a map.
These geometries are naturally endowed with aC0 Finsler metricFC as follows:

if p 2 C and v 2 TpC D R
d with v ¤ 0, the straight line passing byp and directed by

v meets�C at two pointspC and p�; we then define

FC(p, v) D
1

2
kvk

�

1

kp� p�k
C

1

kp� pCk

�

and

FC(p, 0)D 0.
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Fig. 1. The Hilbert distance.

Fig. 2. The Finsler structure.

The Hilbert distancedC is the length distance associated toFC .
Let us remark that by an abuse of notation ifC is a closed convex set with non

empty interior, then we still denote by (C, dC) the Hilbert geometry associated to its

interior VC.

1.2. Faces. Recall that to a closed convex setK � R

d we can associate an
equivalence relation, stating that two pointsA and B are equivalent if they are equal or
if there exists a segment [C, D] � K containing the segment [A, B] such thatC ¤ A, B
and D ¤ A, B. The equivalent classes are calledfaces. A face is called ak-face, if
the dimension of the smallest affine space containing it isk.

A 0-face is usually called anextremal pointand for a convex polytopes it is called
a vertex.
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Fig. 3. Conical faces in dimension 3.

Thus defined all faces are open sets in their affine hull, that is in the smallest affine
set containing them. For instance the segment [a,b] in R admits three faces, which are
{a}, {b} and the open segment (a, b).

Notice that ifK has non-empty interior (that isK n�K ¤ ;), then itsd-dimensional
face is its interior.

In this paper a simplex inRd is the convex closure ofdC1 projectively independ-
ent points, i.e., a triangle inR2, a tetrahedron inR3, etc.

DEFINITION 1 (Conical faces). LetC be a closed convex set. Letk < d. Sup-
pose that a simplexS containsC and that a non-emptyk-face f � �C, is included in
a k-face of S. Then we say thatf is a conical faceof C and thatC admits a coni-
cal face.

When a facef is in the boundary of another faceF we write f < F .

DEFINITION 2 (Conical flag). LetC be a closed convex set inRd. If there exist
a simplexS contained inC, with a family of faces f0, f1, : : : , fd�1 such that for any
k D 0, : : : , d � 1,
(1) ; < f0 < f1 < f2 < � � � < fd�1 < S;
(2) fk is a subset of ak-conical face ofC;
(3) no otherk-face ofS is inside ak-conical face ofC;
then we call the sequence of facesx D f0 < f1 < f2 < � � � < fd�1 < C a conical flag
and say thatC admits aconical flag at x. Furthermore we will call the simplexS a
conical flag neighborhood ofthe point x in the convexC.

1.3. Prismatic neighborhoods and cones.

DEFINITION 3 (Prismatic neighborhoods). LetS be a simplex inRd and let xk

be a point in ak-face of S. Let Ak be thek-dimensional affine space containingxk

and itsk-face. Let (e1, e2, : : : , ek) be an orthonormal basis of the vector spaceAk� xk.
We complete it into an orthonormal basis ofRd with v1, : : : , vd�k chosen as follows:
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Fig. 4. Prismatic neighborhoods of a point in a 1-face and a
2-face in dimension 3.

Fig. 5. Prismatic cone of a 1-face in dimension 3.

each of these vectors is parallel to one of the (kC 1)-faces ofS which containxk in
their boundary.
• An (",�)-prismatic neighborhood withk-dimensional apex ofxk is the convex clos-
ure of a k-cube of diameter 2

p

k" centred atxk in Ak and its translates by�vi , i D
1, : : : , d � k.
• An "-prismatic cone withk-dimensional apex centred atxk is the union of all
(", �)-prismatic neighborhoods withk-dimensional apex ofxk for � 2 RC.

The following lemma, which compares the Hilbert geometriesof a prismatic neigh-
borhood of a pointx and its corresponding cone around that pointx, will play a critical
role in the sequel.

Lemma 3. Let S be a simplex inRd and let xk be a point in a k-face ofS. For
any pair of positive numbers�, � > 0 let Pk be an (", �)-prismatic neighborhood with
k-dimensional apex of xk, and PCk the corresponding prismatic cone. Then for any
sequence(yn,wn)n2N such that for all n2 N, yn is in the interior ofPk; wn 2 R

d; the
sequence(yn)n2N tends to xk, one has

lim
n!1

FPk (yn, wn)

FPCk (yn, wn)
D 1.



POLYGONAL HILBERT GEOMETRIES 221

Fig. 6. Illustration of Example 1.

This lemma is a straightforward consequence of Proposition2.6’s proof in [3] which
can be restated in the following way

Proposition 4. Let K, K 0 be closed convex sets with non-empty interior and not
containing any straight line. For any point x in the interiorof K \ K 0, let k � kx, k � k0x
be their respective Finsler norm induced by the their respective Hilbert geometries. Let
p 2 �K , let E0 be a supporting hyperplane of K at p and let E1 be a hyperplane
parallel to E0 intersecting the interior of K . LetE be the strip obtained as the convex
closure of E0 and E1. Suppose that K and K0 have the same intersection with the
strip E , that is E \ K D E \ K 0. Then as functions onRPn�1, the ratio k � kx=k � k

0

x

uniformly converge to1 as x goes to p.

2. Metric comparison around a conical flag

Theorem 5. Let A and B be two convex sets with a common conical flag neigh-
borhood S then there exists a constant C such that for any x in the interior of the
simplexS and v 2 Rd one has

(1)
1

C
� FB(x, v) 6 FA(x, v) 6 C � FB(x, v).

EXAMPLE 1. In the two-dimensional case the condition is thatA andB contain
a triangleS, one of its edges on their boundaries, a vertex of which, and only one, is
an extremal point of both of them which is a conical point (i.e. 0-conical face), that is
to say that it admits two supporting lines.
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Fig. 7. The simplexes of Lemma 6.

To prove Theorem 5 we will reduce to the case where bothA and B are sim-
plexes andA � B (see Fig. 7). This is the intermediate Lemma 6 whose statement
and illustration follow.

Lemma 6. Suppose thatS, Cin and Cout are three n-simplexes such thatS �
Cin � Cout and S is a conical flag neighborhood of bothCin and Cout. Then there exists
a constant M such that for any x in the interior ofS and any vectorv 2 Rd one has

FCout(x, v) 6 FCin (x, v) 6 M � FCout(x, v).

We can now present Theorem 5’s proof as a corollary.

Proof of Theorem 5. We are going to build a simplexCin in A\B containingS
and a simplexCout containingA[B satisfying the assumptions required by Lemma 6.

Let us suppose these two simplexes exist. The inclusionsCin �A\B andA[B �
Cout give the following sets of inequalities

FCout(x, v) 6 FA(x, v) 6 FCin (x, v),

and

FCout(x, v) 6 FB(x, v) 6 FCin (x, v).

We combine these inequalities to obtain

FCout(x, v)

FCin (x, v)
6

FA(x, v)

FB(x, v)
6

FCin (x, v)

FCout(x, v)
,
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and the conclusion follows from Lemma 6.
Let us now make the construction ofCin and Cout precise. To do so, let us con-

sider the conical flagf0 < f1 < � � � < fd�1 < S. Then we will denote thek-face ofA
containing fk by Ak and similarly byBk the corresponding face ofB.

For n > k > 0, let us denote byvk the vertex ofS in Ak \Bk, but not inAk�1\

Bk�1 and by pk the barycentre of the vertexesvk, : : : , v0. Then aspk and vk belong to
the same face, there exists a pointvk,1 2 Ak \ Bk and vk,1 ¤ vk such that the segment
[ pk, vk,1] containsvk. We take forCin the convex hull ofvd,1, : : : , v0,1.

For Cout, we will actually build its convex dual (i.e. the convex closure of the set
of supporting hyperplanes in the dual vector space). Indeed, if we take convex sets
that are dual toA, B andS with respect to some point in the interior ofS, we obtain
respectively three convex setsB�, A� andS� such that bothB� andA� are subsets of
S�. In the sequel, forkD 0,: : : ,d�1, let us denote byS�k the k-face ofS� correspond-
ing to the hyperplanes tangent tofd�k�1. Then asS is a conical flag neighborhood of
both A and B, S�k contains the hyperplanes tangent toAd�k�1 and toBd�k�1 but not
to Ad�k or Bd�k.

Let us also remark thatfd�k�1 is in the intersection ofAd�k�1 andBd�k�1, which
are both conical faces ofA and B respectively. Therefore the intersection of the hy-
perplanes containing both these faces but no other faces of either A or B, and simul-
taneously tangent toA andB is an open and nonempty subset ofS�k , which we shall
denote byO�

k .
In particular the vertexS�0 D O�

k corresponds to the common supporting hyper-
plane containing the three facesAd�1, Bd�1 and fd�1.

Now, let w0 be the vertexS�0 , and for k D 1, : : : , d � 1 take a pointwk in Ok.
Let also take a pointwd in the intersection of the convex setsA� and B�. Then by
construction, if we letC�out be the convex hull ofw0, : : : ,wd, it is a simplex, which is a
common conical flag ofA�, B� andS�. Thus its dual will contain bothA andB, and
admitsS as a conical flag neighborhood. Therefore we can take it as oursimplexCout.

2.1. Proof of Lemma 6.

2.1.1. Notation needed along the proof. Recall thatS, Cin and Cout are three
d-dimensional simplexes such thatS � Cin � Cout. By assumption the closure of one
of the (d � 1)-dimensional faces ofS is the intersection of the closure of these three
simplexes. In fact, for everyk 6 d � 1, there is a uniquek dimensional face ofS,
denoted by fk, which is also a subset of ak dimensional face ofCin and Cout, denoted
respectively by'in,k and 'out,k. The assumptions of Lemma 6 imply

fk � 'in,k � 'out,k.
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We will denote byAk the k-dimensional affine space containing the three facesfk,
'in,k and 'out,k for 0 6 k 6 d. Hence A0 is a common vertex to the three simplexes
and Ad the whole spaceRd.

2.1.2. Step 0: Ignition. The left inequality of Lemma 6 is a straightforward
consequence of the fact thatCin � Cout.

For the right inequality, by homogeneity we can restrict to vectorsv in the unit
euclidean sphereBd. Hence we will focus on the following ratio, wherex is in the
interior of S and v a unit vector

Q(x, v) D
FCin (x, v)

FCout(x, v)
.

We want to show thatQ remains bounded onVS � Bd

HYPOTHESIS. Let us suppose by contradiction thatQ is not bounded.

Thanks to that hypothesis we can find a sequence (xn, wn)n2N such that for all
n 2 N, xn is in the interior ofS, wn 2 Bd and most importantly

(2) Q(xn, wn)!C1.

Due to the compactness ofS�Bd, at the cost of taking a sub-sequence, we can assume
that this sequence converges to (x

1

, w
1

)

REMARK 1. If the sequence (xn)n2N remains in a compact setU contained in
the interior ofCin, thenQ remains bounded as a continuous function of two variables
over the compact setU � Bd.

2.1.3. Step 1: Focusing on faces.Following the above Remark 1, if (xn)n2N

were to converge toward a point inCin, we would get a contradiction. Hencex
1

has
to be on the boundary ofCin, which implies thatx

1

is on a common face of the
three simplexes.

We will suppose thatx
1

belongs to thek-dimensional facefk of S and obtain
a contradiction.

To do so we will make two simplifications:
(1) We first replace the three simplexes by three prismatic neighborhoods ofx

1

, in
such a way that the sequence (Q(xn, wn))n2N remains bounded if the quotient defined
in the same way for these prismatic neighborhoods does (Steps 2 and 3).
(2) We then replace the three prismatic neighborhoods by their three corresponding
prismatic cones centred atx

1

and then we prove that the corresponding quotient re-
mains bounded (Step 4, Lemmata 3 and 8).
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Fig. 8. Prismatic neighborhoods of a 1-face in dimension 3.

2.1.4. Step 2: The prismatic neighborhoods. For the following constructions
we fix k and we suppose that the limit pointx

1

belongs to thek-dimensional face of
S, i.e., x

1

2 fk.
If k ¤ 0, choose 0< � < � <  such that

(i) the (�, �)-prismatic neighborhood ofx
1

with respect toS is a subset ofS;
(ii) the (�, �)-prismatic neighborhood ofx

1

with respect toCin is a subset ofCin;
(iii) the ( ,  )-prismatic neighborhood ofx

1

with respect toCout containsCout;
(iv) the (�, �)-prismatic neighborhood ofx

1

with respect toCin contains the (�, �)-
prismatic neighborhood ofx

1

with respect toS.
Then we will denote by

(i) PS,k the (�=2, �=2)-prismatic neighborhood ofx
1

with respect toS;
(ii) Pin,k the (�=2, �=2)-prismatic neighborhood ofx

1

with respect toCin;
(iii) Pout,k the (2 , 2 )-prismatic neighborhood ofx

1

with respect toCout;
For k D 0, we takePS,0 D S, Pin,0 D Cin andPout,0D Cout.
Now, for any pointx in the interior ofPS,k and any unit vectorv in Bd we define

(3) Rk(x, v) D
FPin,k (x, v)

FPout,k (x, v)
.

We introduce this ratio because for any pointx in the interior ofPS,k and any
vector v it bounds from aboveQ(x, v), i.e.,

(4) Q(x, v) 6 Rk(x, v).
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Fig. 9. Prismatic cones of a 1-face in dimension 3.

2.1.5. Step 3: The prismatic cones. Let us denote by
(i) PCS,k the �=2-prismatic cone centred atx

1

with respect toS;
(ii) PC in,k the �=2-prismatic cone centred atx

1

with respect toCin;
(iii) PCout,k the 2 -prismatic cone centred atx

1

with respect toCout.
by construction we havePCS,k � PC in,k � PCout,k.

Finally we associate the following ratio with these prismatic cones.

(5) Rk(x, v) D
FPC in,k (x, v)

FPCout,k (x, v)
,

where x is in the interior ofPCS,k and v 2 Bd.

2.1.6. Step 4: Comparisons. First notice that there exist an integerN such that
for all n > N, xn is in the interior ofPS,k. Hence, applying Lemma 3 we get the
following equivalence.

Lemma 7. Let us fix06 k 6 d and let(yn, un)n2N be a sequence with yn in the
interior of the prismatic conePCS,k converging to(x

1

, u
1

) with u
1

2 Bd; then

lim
n!1

Rk(yn, un)

Rk(yn, un)
D 1.

The previous Lemma 7 allows us to focus on the prismatic cones, therefore the
heart of our proof now lies in the following key lemma.

Lemma 8. Let us fix06 k 6 d and let(yn, un)n2N be a sequence with yn in the
interior of the prismatic conePCS,k converging to(x

1

, u
1

) with u
1

2 Bd; then there
is a constant c such that for all n2 N one has

(6) Rk(yn, un) 6 c.



POLYGONAL HILBERT GEOMETRIES 227

Proof of Lemma 8. We suppose thatx
1

is the origin thus the affinek-dimensional
subspaceAk containing fk is actually a sub-vector space. We then consider the
decomposition

R

d
D Ak � A?k ,

and theinhomogeneous scaling1 V Ak,� which is defined as the identity onAk and as
the dilation of ratio� on A?k . When k D 0 this is just a dilation centred at the origin.

The three prismatic cones are invariant by these inhomogeneous scalings, hence
V Ak,� is an isometry with respect to their Hilbert geometries.

Now consider a supporting hyperplaneE0 to these prismatic cones at the origin,
and an affine hyperplaneE1 parallel to E0 intersecting the prismatic cones and the
face fkC1. Then for anyn 2 N, there is a� such thatyn is is pushed away from the
origin onto the hyperplanesE1 while staying in the interior of the inside prismatic cone
PCS,k, i.e.

9�, V Ak,�(yn) 2 E1

and

V Ak,�(yn) 2 PCS,k.

This gives a new sequence (y0n, u0n)n2N , with y0n D V Ak,�(yn) and u0n D
V Ak,�(un)=kV Ak,�(un)k, which stays in the hyperplaneE1, and such thatRk(yn, un) D
Rk(y0n, u0n).

By descending induction, suppose that for any triple of prismatic cones with
k0-dimensional apex of typePC

�,k0 which can occur in a construction in step 3, with
k0 > k, our conclusion holds.

CASE k D d: In that situation, the new sequence remains in the intersection of
E1 with the interior of the prismatic conePCS,d, which is a common compact set of
the prismatic conesPin,d and Pout,d, and thus we conclude following Remark 1, that
the ratioRd(yn, un) remains bounded.

CASE k < d: Regarding the sequence (y0n, u0n)n2N : either it stays away from the
common hyperplaneAn�1, which means that the sequence remains in a common compact
set in the interior of the prismatic conesPin,k andPout,k, and thus again by Remark 1 we
conclude that there is a constantc such that

Rk(yn, un) D Rk(y0n, u0n) 6 c,

or the sequence admits a sub-sequence converging to the common hyperplaneAn�1

while remaining in the hyperplaneE1, hence away fromAk. Without loss of generality
we thus can suppose that the whole sequence (y0n, u0n)n2N converges to (y

1

, u
1

), with
y
1

in some commonk0-dimensional, withk0 > k face of the three prismatic cones.

1Known as “Affinité vectorielle” in French.
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We remark that from a projective point of view, the prismaticcones are actually
prismatic polytopes, having another common face, the projective hyperplane at infinity.
In other words, up to a change of affine charts, which is an isometry for the respective
Hilbert geometries, we can suppose that the prismatic conesare prismatic polytopes.

Once we remarked this, we can now build three new prismatic polytopes of type
P
�,k0 and their corresponding prismatic cones of typeP

�,k0 containingy
1

, obtaining a
new ratio of typeRk0 which bounds from above our ratioRk. Now the induction as-
sumption allows us to conclude that this new ratio is boundedfrom above, and there-
fore the sequenceRk(yn, un) also stays bounded from above asn goes to infinity and
our proof is complete.

2.1.7. Step 5: Conclusion. Let us consider a converging sub-sequence (xn,wn)n2N

satisfying the divergence property (2). Then for some 06 k 6 d, the limit x
1

belongs to
the face fk.

Therefore Lemmata 7 and 8 imply thatRk(xn, wn) remains bounded asn ! 1,
and by the inequality (4) thatQ(xn, wn) as well, which is absurd.

Hence our initial hypothesis, thatQ is not bounded is violated, which concludes
our proof.

3. Polytopal Hilbert geometries are bi-Lipschitz to euclidean vector spaces

The barycentre of a polytope and its faces induce a decomposition of the polytope
into pyramids with apex the barycentre and base the faces. These pyramids also give
rise to cones with summit their apex which in turn decompose the ambient space. In
this section we built a map which sends these pyramids to their corresponding cones
and which is a bi-Lipschitz map between the Hilbert geometryof the polytope and the
Euclidean geometry of the ambient space.

The proof of Theorem 1 consists in building a bi-Lipschitz map and take the follow-
ing steps:
(1) Using the barycentric subdivision, in Section 3.1 we decompose a polytopal do-
main ofRd into a finite number of simplexesSi , which we callbarycentric simplexes.
(2) In Section 3.2 we prove that each barycentric simplexSi of a polytope admits a
bi-Lipschitz embedding onto a barycentric simplexSd of the d-simplex.
(3) We show that we can send isometrically the barycentric simplex of a d-simplex
onto a cone of a vector spaceWd, using a known isometric map between thed-simplex
and Wd (see Section 3.3). This cone is then sent isometrically to the cone associated
to a barycentric simplex of a polytope.
(4) Finally this allows us in Section 3.4 to define a map from the polytopal domain
to R

d by patching the bi-Lipschitz embeddings associated to eachof its barycentric
simplexes.

3.1. Cell decomposition of the polytope. ConsiderP a polytope inRd. We
will denote by fi j the i th face of dimensionj , 16 j 6 d.
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Fig. 10. The last three steps of the decomposition in dimension 3.

Let pd be the barycentre ofP, and pi j be the barycentre of the facefi j . Let us
denote byDi j the half line from pd to pi j .

We recall the following well known property, emphasizing anaspect we need.

PROPERTY 9. A polytopal domainP in R

d can be uniquely decomposed as a
union of d-dimensional simplexes, calledbarycentric simplexesor cells, such that the
vertices are barycentres of the faces and each cell is a conical flag neighborhood of the
polytopeP.

In the sequel let us adopt the following notations and conventions: If P is a poly-
tope in Rd, we will suppose that its barycentre is the origin and denoteby Si , for
i D 1, : : : , N, its barycentric simplexes.

REMARK 2. The intersection of two barycentric simplexes is a lower-dimensional
simplex: it is the closure of a common face containing the barycentre of the polytope.

Si is the simplex whose vertexes are the pointvi ,0, : : : , vi ,d, wherevi ,d D pd is the
barycentre ofP, and for k D d � 1, : : : , 0, vi ,k is the barycentre of ak-dimensional
face, always on the boundary of the face to whichvi ,kC1 belongs (see Fig. 11).
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Fig. 11. Barycentric simplexes of a polygon.

To eachi D 1, : : : , N we will also associate the positive coneCi based onpd and
defined by the vectors$i ,k D vi ,k � vi ,d for k D d � 1, : : : , 0. We will call them the
barycentric conesassociated to the polytope (see Fig. 12).

The convex hull inRdC1 of the dC1 points (1,0,: : : , 0), (0,1,: : : , 0),: : : , (0,0,: : : , 1)
will be denoted bySd and calledstandard d-simplex.

We will call standard barycentric d-simplexof the standardd-simplex, and denote
it by Sd, the convex hull of following the points (see Fig. 13):

(7) Ovk WD

�

1

kC 1
, : : : ,

1

kC 1
� �� �

kC 1 times

, 0, : : : , 0
� �� �

d � k times

�

for d > k > 0.

We will denote byWd thed-dimensional hyperplane inRdC1 defined by the equation

x1C � � � C xdC1 D 0.

3.2. Embedding into the standard simplex. We keep the notations of the pre-
vious subsection. LetL i be the linear map sending the barycentric simplexSi onto the
standard barycentricd-simplexSd � Sn by mapping each pointvi ,k to Ovk.

Let Pi D L i (P) the image of the convex polytope by this linear map.L i is an
isometry between the Hilbert geometries ofPi andP, in other words for anyx in the
interior of P we have (identifyingL i with its differential)

FPi (L i (x), L i (v)) D FP (x, v).
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Fig. 12. Barycentric cones of a polygon.

This way,Sd is a common flag conical neighborhood of bothPi and Sd and by
Theorem 5 we obtain:

PROPERTY 10. There exists a constantki such that for any pointx in the interior
of the standard barycentric simplexSd and any vectorv one has

1

ki
� FPi (x, v) 6 FSd (x, v) 6 ki � FPi (x, v).

3.3. From the standard simplex toWd . Let 8d W Sd ! Wd ' R
d
� R

dC1 de-
fined by

8d(x1, : : : , xdC1) D (X1, : : : , XdC1)

D

�

ln

�

x1

g

�

, : : : , ln

�

xdC1

g

��

with g D (x1 � � � xdC1)1=dC1.
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Fig. 13. The standard barycentric 3-simplex of the 3-simplex.

Thanks to P. de la Harpe [12] we know that8d is an isometry from the sim-
plex Sd into Wd endowed with a norm whose unit ball is a centrally symmetric con-
vex polytope.

For our purpose, let us remark that the image of the standard barycentric simplex
Sd by 8d is the positive cone ofWd of summit at the origin and defined by the vectors

(8) Qvk WD (d � k, : : : , d � k
� �� �

kC 1 times

, �(kC 1), : : : , �(kC 1)
� �� �

d � k times

) for d > k > 0.

We denote by QCd D 8d(Sd) and call it standard d-cone.
Now for any polytopal convex setP 2 Rd, consider the mapMi which maps the

standardd-cone QCd into the barycentric coneCi based onpd, by sending the origin to
pd and the vectorQvk to the vector$i ,k.

3.4. Conclusion. We can now define our bi-Lipschitz map

F W (P, dP )! (Rd, k � k)

in the following way.

(9) 8x 2 Si , F(x) D Mi (8d(L i (x))).

Following Remark 2, ifx 2 P is a common point ofSi and Sj , then necessarily
L i (x) D L j (x) thus,

8d(L i (x)) D 8d(L j (x)) D y

and y is on boundary of the coneQCd. Now Mi (y) D M j (y), becauseMi and M j send

the corresponding boundary cone ofQCd to the respective common boundary cone of the
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Fig. 14. The applicationF in dimension 2 illustrated.

cell-conesCi and C j in the same way. In other words,

8x 2 Si \ Sj , L i (x) D L j (x)

and

8z 2 Ci \ C j , M�1
i (z) D M�1

j (z)

thus F is well defined and it is a bijection.
To prove that it is bi-Lipschitz, we use the fact that line segments are geodesic

and that both spaces are metric spaces.
Hence let p and q be two points in the polytopeP. Then there areM points

(p j ) jD1,:::,M on the segment [p, q] such that p D p1, q D pM , and each segments
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[ p j , p jC1], for j D 1, : : : , M � 1, belongs to a single simplexSj of the simplex de-
composition ofP.

Because of the key Property 10, and the fact that all norms inR

d are equivalent,
we know that for eachj , there is a constantk0j such that, forx, y 2 Sj , one has

kF(x) � F(y)k 6 k0j � dP (x, y).

Applying this to p j , p jC1 for j D 1, : : : , M � 1, we obtain

M�1
X

jD1

kF(p j ) � F(p jC1)k 6 (sup
i

k0i ) � dP (p, q),

where the supremum is taken over all cells of the decomposition, then from the triangle
inequality one concludes that

kF(p) � F(q)k 6

�

sup
i

k0i

�

� dP (p, q).

Starting from a line fromF(p) to F(q) and taking its inverse image after decom-
posing it in segments each of which is in a single barycentric-cone, we obtain in the
same way the other inequality

dP (p, q) 6

�

sup
i

k0i

�

� kF(p) � F(q)k.

4. Hilbert geometries bi-Lipschitz to a normed vector space

Let us make two remarks and give references on the reciprocalof Theorem 1.
Colbois and Verovic in [10] prove that a Hilbert geometry which quasi-isometrically

embeds into a normed vector space is the Hilbert geometry of apolytope. Notice that
in their paper they state a weaker result but actually prove this stronger statement.

In our paper [19] we prove that the asymptotic volume of a Hilbert geometry is
finite if and only if it is the geometry of a polytope. Therefore, this allows us to con-
clude, without referring to the stronger result of Colbois and Verovic, that a Hilbert
geometry bi-Lipschitz to a normed vector space comes from a polytope.
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