Algebraic independence of the values of power series, Lambert series, and infinite products generated by linear recurrences

メタデータ	言語: English
	出版者: Osaka University and Osaka City University,
	Departments of Mathematics
	公開日: 2024-09-09
	キーワード (Ja):
	キーワード (En):
	作成者: 田中, 孝明
	メールアドレス:
	所属: Keio University
URL	https://ocu-omu.repo.nii.ac.jp/records/2010019

ALGEBRAIC INDEPENDENCE OF THE VALUES OF POWER SERIES, LAMBERT SERIES, AND INFINITE PRODUCTS GENERATED BY LINEAR RECURRENCES

ΤΑΚΑ-ΑΚΙ ΤΑΝΑΚΑ

(Received January 5, 2004)

Abstract

In Theorem 1 of this paper, we establish the necessary and sufficient condition for the values of a power series, a Lambert series, and an infinite product generated by a linear recurrence at the same set of algebraic points to be algebraically dependent. In Theorem 4, from which Theorems 1-3 are deduced, we obtain an easily confirmable condition under which the values more general than those considered in Theorem 1 are algebraically independent, improving the method of [5].

1. Introduction and results

Let $\{a_k\}_{k\geq 0}$ be a linear recurrence of positive integers satisfying

(1)
$$a_{k+n} = c_1 a_{k+n-1} + \dots + c_n a_k$$
 $(k = 0, 1, 2, \dots),$

where c_1, \ldots, c_n are nonnegative integers with $c_n \neq 0$. We define a polynomial associated with (1) by

(2)
$$\Phi(X) = X^n - c_1 X^{n-1} - \dots - c_n.$$

In this paper, we always assume that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity and that $\{a_k\}_{k\geq 0}$ is not a geometric progression.

In what follows, let

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \quad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \quad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k})$$

and let \mathbb{Q} and $\overline{\mathbb{Q}}$ denote the fields of rational and algebraic numbers, respectively. The author [5] proved the following theorem: Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ such that none of α_i/α_j $(1 \le i < j \le r)$ is a root of unity. Then the 3r numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \le i \le r)$ are algebraically independent.

On the other hand, the author [4] obtained the necessary and sufficient condition for the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ to be algebraically dependent.

DEFINITION 1. We say that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are $\{a_k\}_{k\ge 0}$ -dependent if there exist a non-empty subset $\{\alpha_{i_1}, \ldots, \alpha_{i_t}\}$ of $\{\alpha_1, \ldots, \alpha_r\}$, roots of unity ζ_1, \ldots, ζ_t , an algebraic number γ with $\alpha_{i_l} = \zeta_l \gamma$ $(1 \le l \le t)$, and algebraic numbers ξ_1, \ldots, ξ_t , not all zero, such that

$$\sum_{l=1}^t \xi_l \zeta_l^{a_k} = 0$$

for all sufficiently large k.

REMARK 1. If the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are $\{a_k\}_{k\ge 0}$ -dependent, then the numbers 1, $f(\alpha_1), \ldots, f(\alpha_r)$ are linearly dependent over $\overline{\mathbb{Q}}$, namely $\sum_{l=1}^{t} \xi_l f(\alpha_{i_l}) \in \overline{\mathbb{Q}}$.

The author [4] proved that the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ are algebraically dependent if and only if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent. In this paper we establish the necessary and sufficient condition for the 3r numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \leq i \leq r)$ to be algebraically dependent:

Theorem 1. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \le i \le r$). Then the numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ ($1 \le i \le r$) are algebraically dependent if and only if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent.

Combining Theorem 1 and the above-mentioned result of [4], we immediately have the following:

Theorem 2. Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. If the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ are algebraically independent, then so are the numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \le i \le r)$.

Theorem 2 implies the following:

Theorem 3. Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. Then

(3)
$$\operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q}(f(\alpha_1), \dots, f(\alpha_r), g(\alpha_1), \dots, g(\alpha_r), h(\alpha_1), \dots, h(\alpha_r)) \\ \geq 3 \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q}(f(\alpha_1), \dots, f(\alpha_r)).$$

The following is an example in which the equality of (3) holds:

EXAMPLE 1. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence defined by

$$a_0 = 1$$
, $a_1 = 2$, $a_{k+2} = 3a_{k+1} + a_k$ $(k = 0, 1, 2, ...)$.

We put

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \quad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \quad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k})$$

Let α be an algebraic number with $0 < |\alpha| < 1$ and let $\omega = e^{2\pi\sqrt{-1}/3} = (-1 + \sqrt{-3})/2$. Since $a_{2k} \equiv 1 \pmod{3}$ and $a_{2k+1} \equiv 2 \pmod{3}$ for any $k \ge 0$, the numbers $\alpha, \omega\alpha$, and α^3 are not $\{a_k\}_{k\ge 0}$ -dependent. Therefore the numbers $f(\alpha)$, $f(\omega\alpha)$, $f(\alpha^3)$, $g(\alpha)$, $g(\omega\alpha)$, $g(\alpha^3)$, $h(\alpha)$, $h(\omega\alpha)$, $h(\alpha^3)$ are algebraically independent by Theorem 1. Noting that $f(\alpha) + f(\omega\alpha) + f(\omega^2\alpha) = 0$, $g(\alpha) + g(\omega\alpha) + g(\omega^2\alpha) = 3g(\alpha^3)$ and $h(\alpha)h(\omega\alpha)h(\omega^2\alpha) = h(\alpha^3)$, we see that

trans. deg_Q Q(
$$f(\alpha)$$
, $f(\omega\alpha)$, $f(\omega^2\alpha)$, $f(\alpha^3)$) = 3,
trans. deg_Q Q($g(\alpha)$, $g(\omega\alpha)$, $g(\omega^2\alpha)$, $g(\alpha^3)$) = 3,
trans. deg_Q Q($h(\alpha)$, $h(\omega\alpha)$, $h(\omega^2\alpha)$, $h(\alpha^3)$) = 3,

and

trans. deg_Q Q(
$$f(\alpha), f(\omega\alpha), f(\omega^2\alpha), f(\alpha^3),$$

 $g(\alpha), g(\omega\alpha), g(\omega^2\alpha), g(\alpha^3), h(\alpha), h(\omega\alpha), h(\omega^2\alpha), h(\alpha^3)) = 9.$

As shown in the example above or in Remark 4 of [5], it seems complicated to state the necessary and sufficient condition for the values of the Lambert series g(z) and the infinite product h(z) at $\{a_k\}_{k\geq 0}$ -dependent algebraic numbers $\alpha_1, \ldots, \alpha_r$ to be algebraically independent. In Theorem 4 below we establish an easily confirmable condition under which such values are algebraically independent.

DEFINITION 2. We say that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are *strongly* $\{a_k\}_{k\ge 0}$ -*dependent* if there exist a non-empty subset $\{\alpha_{i_1}, \ldots, \alpha_{i_l}\}$ of $\{\alpha_1, \ldots, \alpha_r\}$, *N*-th roots of unity ζ_1, \ldots, ζ_l , an algebraic number γ with $\alpha_{i_l} = \zeta_l \gamma$ $(1 \le l \le t)$, and algebraic numbers ξ_1, \ldots, ξ_l , not all zero, such that

$$\sum_{l=1}^{l} \xi_l \zeta_l^{ma_k} = 0, \qquad m = 1, \dots, N-1, \qquad \text{g.c.d.}(m, N) = 1,$$

for all sufficiently large k.

It is clear that, if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are strongly $\{a_k\}_{k>0}$ -dependent, then they are $\{a_k\}_{k>0}$ -dependent.

The following theorem is more precise than Theorem 2 above.

Theorem 4. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. Suppose that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are not strongly $\{a_k\}_{k\geq 0}$ -dependent. Assume further that $\alpha_1, \ldots, \alpha_\rho$ $(\rho \le r)$ are not $\{a_k\}_{k\geq 0}$ -dependent or equivalently that the numbers $f(\alpha_1), \ldots, f(\alpha_\rho)$ are algebraically independent. Then the numbers $f(\alpha_1), \ldots, f(\alpha_\rho), g(\alpha_1), \ldots, g(\alpha_r), h(\alpha_1), \ldots, h(\alpha_r)$ are algebraically independent.

Using Theorem 4, we have an example in which the strict inequality of (3) holds:

EXAMPLE 2. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence defined by

$$a_0 = 1$$
, $a_1 = 3$, $a_{k+2} = 3a_{k+1} + a_k$ $(k = 0, 1, 2, ...)$.

We put

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \quad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \quad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k}).$$

Let α be an algebraic number with $0 < |\alpha| < 1$ and let $\omega = e^{2\pi\sqrt{-1}/3} = (-1 + \sqrt{-3})/2$. Since $a_{2k} \equiv 1 \pmod{3}$ and $a_{2k+1} \equiv 0 \pmod{3}$ for any $k \ge 0$, the numbers $\alpha, \omega\alpha, \omega^2\alpha$ and α^3 are not strongly $\{a_k\}_{k\ge 0}$ -dependent and the numbers $\alpha, \omega\alpha$ and α^3 are not $\{a_k\}_{k\ge 0}$ -dependent. Therefore the numbers $f(\alpha), f(\omega\alpha), f(\alpha^3), g(\alpha), g(\omega\alpha), g(\omega^2\alpha), g(\alpha^3), h(\alpha), h(\omega\alpha), h(\omega^2\alpha), h(\alpha^3)$ are algebraically independent by Theorem 4 with $\rho = 3$ and r = 4. Noting that $\omega f(\alpha) - (\omega + 1)f(\omega\alpha) + f(\omega^2\alpha) = 0$, we see that

trans. deg_Q Q(
$$f(\alpha)$$
, $f(\omega\alpha)$, $f(\omega^2\alpha)$, $f(\alpha^3)$) = 3,
trans. deg_Q Q($f(\alpha)$, $f(\omega\alpha)$, $f(\omega^2\alpha)$, $f(\alpha^3)$,
 $g(\alpha)$, $g(\omega\alpha)$, $g(\omega^2\alpha)$, $g(\alpha^3)$, $h(\alpha)$, $h(\omega\alpha)$, $h(\omega^2\alpha)$, $h(\alpha^3)$) = 11,

and so

trans. deg_Q Q(f(
$$\alpha$$
), f($\omega\alpha$), f($\omega^2\alpha$), f(α^3),
g(α), g($\omega\alpha$), g($\omega^2\alpha$), g(α^3), h(α), h($\omega\alpha$), h($\omega^2\alpha$), h(α^3))
> 3 trans. deg_Q Q(f(α), f($\omega\alpha$), f($\omega^2\alpha$), f(α^3)).

2. Lemmas

Let $F(z_1, ..., z_n)$ and $F[[z_1, ..., z_n]]$ denote the field of rational functions and the ring of formal power series in the variables $z_1, ..., z_n$ with coefficients in a field F, respectively, and F^{\times} the multiplicative group of nonzero elements of F. Let $\Omega = (\omega_{ij})$

490

be an $n \times n$ matrix with nonnegative integer entries. Then the maximum ρ of the absolute values of the eigenvalues of Ω is itself an eigenvalue (cf. Gantmacher [1, p.66, Theorem 3]). If $z = (z_1, \ldots, z_n)$ is a point of \mathbb{C}^n with \mathbb{C} the set of complex numbers, we define the transformation $\Omega: \mathbb{C}^n \to \mathbb{C}^n$ by

(4)
$$\Omega \boldsymbol{z} = \left(\prod_{j=1}^{n} z_j^{\omega_{1j}}, \prod_{j=1}^{n} z_j^{\omega_{2j}}, \dots, \prod_{j=1}^{n} z_j^{\omega_{nj}}\right).$$

We suppose that Ω and an algebraic point $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)$, where α_i are nonzero algebraic numbers, have the following four properties:

(I) Ω is non-singular and none of its eigenvalues is a root of unity, so that in particular $\rho > 1$.

(II) Every entry of the matrix Ω^k is $O(\rho^k)$ as k tends to infinity. (III) If we put $\Omega^k \boldsymbol{\alpha} = (\alpha_1^{(k)}, \dots, \alpha_n^{(k)})$, then

$$\log |\alpha_i^{(k)}| \le -c\rho^k \qquad (1 \le i \le n)$$

for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero $f(z) \in \mathbb{C}[[z_1, \ldots, z_n]]$ which converges in some neighborhood of the origin, there are infinitely many positive integers k such that $f(\Omega^k \alpha) \neq 0$.

We note that the property (II) is satisfied if every eigenvalue of Ω of absolute value ρ is a simple root of the minimal polynomial of Ω .

Lemma 1 (Tanaka [4, Lemma 4, Proof of Theorem 2]). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity, where $\Phi(X)$ is the polynomial defined by (2). Let

(5)
$$\Omega = \begin{pmatrix} c_1 \ 1 \ 0 \ \cdots \ 0 \\ c_2 \ 0 \ 1 \ \ddots \ \vdots \\ \vdots \ \vdots \ \ddots \ 0 \\ \vdots \ \vdots \ \ddots \ 1 \\ c_n \ 0 \ \cdots \ \cdots \ 0 \end{pmatrix}$$

and let β_1, \ldots, β_s be multiplicatively independent algebraic numbers with $0 < |\beta_j| < 1$ $(1 \le j \le s)$. Let p be a positive integer and put

$$\Omega' = \operatorname{diag}(\underbrace{\Omega^p, \ldots, \Omega^p}_{s}).$$

Then the matrix Ω' and the point

$$\boldsymbol{\beta} = (\underbrace{1, \ldots, 1}_{n-1}, \beta_1, \ldots, \underbrace{1, \ldots, 1}_{n-1}, \beta_s)$$

have the properties (I)–(IV).

Lemma 2 (Kubota [2], see also Nishioka [3]). Let K be an algebraic number field. Suppose that $f_1(z), \ldots, f_m(z) \in K[[z_1, \ldots, z_n]]$ converge in an n-polydisc U around the origin and satisfy the functional equations

$$f_i(\Omega z) = a_i(z) f_i(z) + b_i(z) \qquad (1 \le i \le m),$$

where $a_i(z), b_i(z) \in K(z_1, ..., z_n)$ and $a_i(z)$ $(1 \le i \le m)$ are defined and nonzero at the origin. Assume that the $n \times n$ matrix Ω and a point $\alpha \in U$ whose components are nonzero algebraic numbers have the properties (I)–(IV) and that $a_i(z)$ $(1 \le i \le m)$ are defined and nonzero at $\Omega^k \alpha$ for all $k \ge 0$. If $f_1(z), ..., f_m(z)$ are algebraically independent over $K(z_1, ..., z_n)$, then the values $f_1(\alpha), ..., f_m(\alpha)$ are algebraically independent.

Lemma 2 is essentially due to Kubota [2] and improved by Nishioka [3].

In what follows, *C* denotes a field of characteristic 0. Let $L = C(z_1, ..., z_n)$ and let *M* be the quotient field of $C[[z_1, ..., z_n]]$. Let Ω be an $n \times n$ matrix with nonnegative integer entries having the property (I). We define an endomorphism $\tau : M \to M$ by

$$f^{\tau}(z) = f(\Omega z) \qquad (f(z) \in M)$$

and a subgroup H of L^{\times} by

$$H = \{ g^{\tau} g^{-1} \mid g \in L^{\times} \}.$$

Lemma 3 (Kubota [2], see also Nishioka [3]). Let $f_i \in M$ (i = 1, ..., h) satisfy

 $f_i^{\tau} = f_i + b_i,$

where $b_i \in L$ $(1 \le i \le h)$, and let $f_i \in M^{\times}$ (i = h + 1, ..., m) satisfy

$$f_i^{\tau} = a_i f_i,$$

where $a_i \in L^{\times}$ $(h+1 \le i \le m)$. Suppose that a_i and b_i have the following properties: (i) If $c_i \in C$ $(1 \le i \le h)$ are not all zero, there is no element g of L such that

$$g-g^{\tau}=\sum_{i=1}^{h}c_{i}b_{i}.$$

(ii) a_{h+1}, \ldots, a_m are multiplicatively independent modulo H. Then the functions f_i $(1 \le i \le m)$ are algebraically independent over L.

492

Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1) with the conditions stated in the beginning of this paper. We define a monomial

(6)
$$P(z) = z_1^{a_{n-1}} \cdots z_n^{a_0},$$

which is denoted similarly to (4) by

(7)
$$P(\boldsymbol{z}) = (a_{n-1}, \dots, a_0)\boldsymbol{z}.$$

Let Ω be the matrix defined by (5). It follows from (1), (4), and (7) that

$$P(\Omega^k \boldsymbol{z}) = z_1^{a_{k+n-1}} \cdots z_n^{a_k} \qquad (k \ge 0).$$

In what follows, let \overline{C} be an algebraically closed field of characteristic 0.

Lemma 4 (Tanaka [5]). Suppose that $G(z) \in \overline{C}[[z_1, ..., z_n]]$ satisfies the functional equation of the form

$$G(\boldsymbol{z}) = \alpha G(\Omega^p \boldsymbol{z}) + \sum_{k=q}^{p+q-1} Q_k(P(\Omega^k \boldsymbol{z})),$$

where $\alpha \neq 0$ is an element of \overline{C} , Ω is defined by (5), p > 0, $q \geq 0$ are integers, and $Q_k(X) \in \overline{C}(X)$ ($q \leq k \leq p+q-1$) are defined at X = 0. If $G(z) \in \overline{C}(z_1, \ldots, z_n)$, then $G(z) \in \overline{C}$ and $Q_k(X) \in \overline{C}$ ($q \leq k \leq p+q-1$).

Lemma 5 (Tanaka [5]). Suppose that G(z) is an element of the quotient field of $\overline{C}[[z_1, \ldots, z_n]]$ satisfying the functional equation of the form

$$G(\boldsymbol{z}) = \left(\prod_{k=q}^{p+q-1} Q_k(P(\Omega^k \boldsymbol{z}))\right) G(\Omega^p \boldsymbol{z}),$$

where Ω , p, q, and $Q_k(X)$ are as in Lemma 4. Assume that $Q_k(0) \neq 0$. If $G(z) \in \overline{C}(z_1, \ldots, z_n)$, then $G(z) \in \overline{C}$ and $Q_k(X) \in \overline{C}^{\times}$ $(q \leq k \leq p + q - 1)$.

3. Proof of Theorems 1 and 4

Proof of Theorem 1. If the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent, then the numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \leq i \leq r)$ are algebraically dependent, since so are the numbers $f(\alpha_i)$ $(1 \leq i \leq r)$ by Remark 1. Conversely, if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are not $\{a_k\}_{k\geq 0}$ -dependent, then by Theorem 4 with $\rho = r$ the numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \leq i \leq r)$ are algebraically independent. This completes the proof of the theorem.

Proof of Theorem 4. Suppose on the contrary that the numbers $f(\alpha_1), \ldots, f(\alpha_\rho)$, $g(\alpha_1), \ldots, g(\alpha_r), h(\alpha_1), \ldots, h(\alpha_r)$ are algebraically dependent. There exist multiplicatively independent algebraic numbers β_1, \ldots, β_s with $0 < |\beta_j| < 1$ $(1 \le j \le s)$ such that

(8)
$$\alpha_i = \zeta_i \prod_{j=1}^s \beta_j^{e_{ij}} \qquad (1 \le i \le r),$$

where ζ_1, \ldots, ζ_r are roots of unity and e_{ij} $(1 \le i \le r, 1 \le j \le s)$ are nonnegative integers (cf. Nishioka [3, Lemma 3.4.9]). Take a positive integer N such that $\zeta_i^N = 1$ for any i $(1 \le i \le r)$. We can choose a positive integer p and a nonnegative integer q such that $a_{k+p} \equiv a_k \pmod{N}$ for any $k \ge q$. Let $y_{j\lambda}$ $(1 \le j \le s, 1 \le \lambda \le n)$ be variables and let $y_j = (y_{j1}, \ldots, y_{jn})$ $(1 \le j \le s)$, $y = (y_1, \ldots, y_s)$. Define

$$\begin{split} f_i(\boldsymbol{y}) &= \sum_{k=q}^{\infty} \zeta_i^{a_k} \prod_{j=1}^s P(\Omega^k \boldsymbol{y}_j)^{e_{ij}} \quad (1 \le i \le \rho), \\ g_i(\boldsymbol{y}) &= \sum_{k=q}^{\infty} \frac{\zeta_i^{a_k} \prod_{j=1}^s P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}}{1 - \zeta_i^{a_k} \prod_{j=1}^s P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}} \quad (1 \le i \le r), \end{split}$$

and

$$h_i(\boldsymbol{y}) = \prod_{k=q}^{\infty} \left(1 - \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}} \right) \qquad (1 \le i \le r),$$

where P(z) and Ω are defined by (6) and (5), respectively. Letting

$$\boldsymbol{\beta} = (\underbrace{1,\ldots,1}_{n-1},\beta_1,\ldots,\underbrace{1,\ldots,1}_{n-1},\beta_s)$$

we see by (8) that

$$f_i(\boldsymbol{\beta}) = \sum_{k=q}^{\infty} \alpha_i^{a_k}, \quad g_i(\boldsymbol{\beta}) = \sum_{k=q}^{\infty} \frac{\alpha_i^{a_k}}{1 - \alpha_i^{a_k}}, \quad h_i(\boldsymbol{\beta}) = \prod_{k=q}^{\infty} (1 - \alpha_i^{a_k}).$$

Hence the values $f_1(\beta), \ldots, f_{\rho}(\beta), g_1(\beta), \ldots, g_r(\beta), h_1(\beta), \ldots, h_r(\beta)$ are algebraically dependent. Let

$$\Omega' = \operatorname{diag}(\underbrace{\Omega^p, \ldots, \Omega^p}_{s}).$$

Then $f_1(y), \ldots, f_{\rho}(y), g_1(y), \ldots, g_r(y), h_1(y), \ldots, h_r(y)$ satisfy the functional equa-

tions

$$\begin{split} f_i(\boldsymbol{y}) &= f_i(\Omega' \boldsymbol{y}) + \sum_{k=q}^{p+q-1} \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}, \\ g_i(\boldsymbol{y}) &= g_i(\Omega' \boldsymbol{y}) + \sum_{k=q}^{p+q-1} \frac{\zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}}{1 - \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}}, \end{split}$$

and

$$h_i(\boldsymbol{y}) = \left(\prod_{k=q}^{p+q-1} \left(1 - \zeta_i^{a_k} \prod_{j=1}^s P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}\right)\right) h_i(\Omega' \boldsymbol{y}),$$

where $\Omega' \boldsymbol{y} = (\Omega^p \boldsymbol{y}_1, \dots, \Omega^p \boldsymbol{y}_s)$. By Lemmas 1 and 2 the functions $f_1(\boldsymbol{y}), \dots, f_\rho(\boldsymbol{y}), g_1(\boldsymbol{y}), \dots, g_r(\boldsymbol{y}), h_1(\boldsymbol{y}), \dots, h_r(\boldsymbol{y})$ are algebraically dependent over $\overline{\mathbb{Q}}(\boldsymbol{y})$. Hence by Lemma 3 at least one of the following two cases arises:

(i) There are algebraic numbers $b_1, \ldots, b_\rho, c_1, \ldots, c_r$, not all zero, and $F(y) \in \overline{\mathbb{Q}}(y)$ such that

(9)
$$F(\boldsymbol{y}) = F(\Omega' \boldsymbol{y}) + \sum_{k=q}^{p+q-1} \left(\sum_{i=1}^{\rho} b_i \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}} + \sum_{i=1}^{r} \frac{c_i \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}}{1 - \zeta_i^{a_k} \prod_{j=1}^{s} P(\Omega^k \boldsymbol{y}_j)^{e_{ij}}} \right).$$

(ii) There are rational integers d_i $(1 \le i \le r)$, not all zero, and $G(y) \in \overline{\mathbb{Q}}(y) \setminus \{0\}$ such that

(10)
$$G(\boldsymbol{y}) = \left(\prod_{k=q}^{p+q-1}\prod_{i=1}^{r} \left(1-\zeta_{i}^{a_{k}}\prod_{j=1}^{s}P(\Omega^{k}\boldsymbol{y}_{j})^{e_{ij}}\right)^{d_{i}}\right)G(\Omega'\boldsymbol{y}).$$

Let M be a positive integer and let

$$y_j = (y_{j1}, \dots, y_{jn}) = (z_1^{M^j}, \dots, z_n^{M^j}) \qquad (1 \le j \le s),$$

where *M* is so large that the following two properties are both satisfied: (A) If $(e_{i1}, \ldots, e_{is}) \neq (e_{i'1}, \ldots, e_{i's})$, then $\sum_{j=1}^{s} e_{ij}M^j \neq \sum_{j=1}^{s} e_{i'j}M^j$. (B) $F^*(z) = F(z_1^M, \ldots, z_n^M, \ldots, z_1^{M^s}, \ldots, z_n^{M^s}) \in \overline{\mathbb{Q}}(z_1, \ldots, z_n)$, $G^*(z) = G(z_1^M, \ldots, z_n^M, \ldots, z_1^{M^s}, \ldots, z_n^{M^s}) \in \overline{\mathbb{Q}}(z_1, \ldots, z_n) \setminus \{0\}$.

Then by (9) and (10), at least one of the following two functional equations holds:

(11)
$$F^{*}(\boldsymbol{z}) = F^{*}(\Omega^{p}\boldsymbol{z}) + \sum_{k=q}^{p+q-1} \left(\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} P(\Omega^{k}\boldsymbol{z})^{E_{i}} + \sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} P(\Omega^{k}\boldsymbol{z})^{E_{i}}}{1 - \zeta_{i}^{a_{k}} P(\Omega^{k}\boldsymbol{z})^{E_{i}}} \right),$$

(12)
$$G^{*}(\boldsymbol{z}) = \left(\prod_{k=q}^{p+q-1} \prod_{i=1}^{r} \left(1 - \zeta_{i}^{a_{k}} P(\Omega^{k} \boldsymbol{z})^{E_{i}}\right)^{d_{i}}\right) G^{*}(\Omega^{p} \boldsymbol{z})$$

where $E_i = \sum_{j=1}^{s} e_{ij} M^j > 0$ $(1 \le i \le r)$. By Lemmas 4, 5, and the property (B), at least one of the following two properties are satisfied: (i) For any k $(q \le k \le p+q-1)$,

(13)
$$\sum_{i=1}^{\rho} b_i \zeta_i^{a_k} X^{E_i} + \sum_{i=1}^{r} \frac{c_i \zeta_i^{a_k} X^{E_i}}{1 - \zeta_i^{a_k} X^{E_i}} = \sum_{i=1}^{\rho} b_i \zeta_i^{a_k} X^{E_i} + \sum_{i=1}^{r} c_i \sum_{h=1}^{\infty} (\zeta_i^{a_k} X^{E_i})^h \in \overline{\mathbb{Q}}.$$

(ii) For any $k \ (q \le k \le p + q - 1)$,

(14)
$$\prod_{i=1}^{r} (1-\zeta_i^{a_k} X^{E_i})^{d_i} = \gamma_k \in \overline{\mathbb{Q}}^{\times}.$$

Suppose first that (11) is satisfied with $c_i = 0$ $(1 \le i \le r)$. Let $S = \{i \in \{1, ..., \rho\} \mid b_i \ne 0\}$ and let $\{i_1, ..., i_t\}$ be a subset of S such that $E_{i_1} = \cdots = E_{i_t}$ and $E_{i_1} < E_j$ for any $j \in S \setminus \{i_1, ..., i_t\}$. Then by (13)

$$\sum_{l=1}^{t} b_{i_l} \zeta_{i_l}^{a_k} = 0 \qquad (q \le k \le p + q - 1)$$

and hence

$$\sum_{l=1}^{t} b_{i_l} \zeta_{i_l}^{a_k} = 0 \qquad (k \ge q)$$

since $a_{k+p} \equiv a_k \pmod{N}$ for any $k \geq q$. By the property (A), $E_{i_1} = \cdots = E_{i_l}$ implies $(e_{i_11}, \ldots, e_{i_ls}) = \cdots = (e_{i_l1}, \ldots, e_{i_ls})$. Putting $\gamma = \prod_{j=1}^s \beta_j^{e_{i_jj}}$, we have $\alpha_{i_l} = \zeta_{i_l} \gamma$ $(1 \leq l \leq t)$ by (8). Therefore the algebraic numbers $\alpha_1, \ldots, \alpha_\rho$ are $\{a_k\}_{k\geq 0}$ -dependent, which contradicts the assumption.

Secondly suppose that (11) is satisfied with c_1, \ldots, c_r not all zero. Let $T = \{i \in \{1, \ldots, r\} \mid c_i \neq 0\}$ and let $\{i_1, \ldots, i_u\}$ be a subset of T such that $E_{i_1} = \cdots = E_{i_u}$ and $E_{i_1} < E_j$ for any $j \in T \setminus \{i_1, \ldots, i_u\}$. Let m be any integer with $0 \le m \le N - 1$ such that g.c.d.(m, N) = 1. By Dirichlet's theorem on arithmetical progressions, there exists a prime number P_m such that $P_m \equiv m \pmod{N}$ and $P_m > \max_{1 \le i \le r} E_i$. Since $P_m E_{i_1}$ is not divided by any E_j with $j \in T \setminus \{i_1, \ldots, i_u\}$, the term $\sum_{l=1}^u c_{l_l} (\zeta_{l_l}^{a_k} X^{E_{l_1}})^{P_m}$ must

496

vanish in (13). Hence

$$\sum_{l=1}^{u} c_{i_l} \zeta_{i_l}^{ma_k} = 0 \qquad (q \le k \le p + q - 1)$$

and so the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are strongly $\{a_k\}_{k\geq 0}$ -dependent, which contradicts the assumption.

Finally suppose that (12) is satisfied. Taking the logarithmic derivative of (14), we get

$$\sum_{i=1}^{r} \frac{-d_i E_i \zeta_i^{a_k} X^{E_i - 1}}{1 - \zeta_i^{a_k} X^{E_i}} = 0 \qquad (q \le k \le p + q - 1)$$

and so

$$\sum_{i=1}^{r} \frac{d_i E_i \zeta_i^{a_k} X^{E_i}}{1 - \zeta_i^{a_k} X^{E_i}} = \sum_{i=1}^{r} d_i E_i \sum_{h=1}^{\infty} (\zeta_i^{a_k} X^{E_i})^h = 0 \qquad (q \le k \le p+q-1).$$

Therefore the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are strongly $\{a_k\}_{k \ge 0}$ -dependent also in this case by the same way as above. This completes the proof of the theorem.

References

- [1] F.R. Gantmacher: Applications of the Theory of Matrices, Interscience, New York, 1959.
- [2] K.K. Kubota: On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9–50.
- [3] K. Nishioka: Mahler Functions and Transcendence, Lecture Notes in Mathematics **1631**, Springer-Verlag, Berlin, 1996.
- [4] T. Tanaka: Algebraic independence of the values of power series generated by linear recurrences, Acta Arith. **74** (1996), 177–190.
- [5] T. Tanaka: Algebraic independence results related to linear recurrences, Osaka J. Math. 36 (1999), 203–227.

Department of Mathematics Keio University Hiyoshi 3-14-1, Kohoku-ku Yokohama 223-8522, Japan e-mail: takaaki@math.keio.ac.jp