Compact transformation groups and fixed point sets of restricted action to maximal torus

メタデータ	言語: English			
	出版者: Osaka University and Osaka City University,			
	Departments of Mathematics			
	公開日: 2024-09-09			
	キーワード (Ja):			
	キーワード (En):			
	作成者: 内田, 伏一			
	メールアドレス:			
	所属:			
URL	https://ocu-omu.repo.nii.ac.jp/records/2008426			

COMPACT TRANSFORMATION GROUPS AND FIXED POINT SETS OF RESTRICTED ACTION TO MAXIMAL TORUS

Fuichi UCHIDA

(Received January 20, 1975)

0. Introduction

Let G be a compact connected Lie group and let T be a maximal torus of G. Define

$$m(G) = \max \{ \dim H | H \text{ is a proper closed subgroup of } G \}$$
, $m_0(G) = \max \{ \dim H | H \text{ is a proper closed subgroup of } G \}$ with rank $H = \operatorname{rank} G \}$.

Let M be a connected manifold with a non-trivial smooth G-action and let H be a closed subgroup of G. Denote by F(H, M) the fixed point set of the restricted action of the given G-action to the subgroup H. Then each connected component F_a ($a \in A$) of F(H, M) is a regular submanifold of M. Define

$$\dim F(H, M) = \max \{\dim F_a | a \in A\}$$

if F(H, M) is non-empty and we put

$$\dim F(H, M) = -1$$

if F(H, M) is empty. Then we have the following results.

Theorem 1.

- (a) In general, dim $M \dim F(T, M) \geqslant \dim G m(G)$.
- (b) If G is semi-simple and

$$\dim F(G, M) < \dim F(T, M)$$
,

then

$$\dim M - \dim F(T, M) \geqslant \dim G - m_0(G)$$
.

Theorem 2. If

$$\dim M - \dim F(T, M) = \dim G - m(G),$$

then G is semi-simple, $m(G)=m_0(G)$ and

$$\dim M - \dim F_a = \dim G - m(G)$$

for each connected component F_a of F(T, M). Moreover

$$\dim H = m(G)$$
 and $\operatorname{rank} H = \operatorname{rank} G$

for a principal isotropy group H.

1. Preliminary lemmas

In this section we prepare several lemmas.

Lemma 1.1. Let H be a closed subgroup of G and assume $T \subset H$. Then

$$F(T, G/H) = N(T)H/H.$$

In particular, F(T, G/H) is a non-empty finite set.

Proof. It is clear that

$$F(T, G/H) = \{gH | g^{-1}Tg \subset H\}.$$

If $g^{-1}Tg \subset H$, then there is $h \in H$ such that

$$g^{-1}Tg = hTh^{-1}$$
,

since T is a maximal torus of H^0 , the identity component of H. Thus

$$gh \in N(T)$$
: the normalizer of T in G.

Hence we obtain

$$F(T, G/H) = N(T)H/H$$
.

Next, there is a natural surjection $N(T)/T \rightarrow N(T)H/H$, where N(T)/T is the Weyl group of G which is a finite group. Therefore F(T,G/H) is a non-empty finite set.

In the following, we assume that M is a connected manifold with a non-trivial smooth G-action. It is clear

$$\dim M \geqslant \dim G - m(G).$$

Lemma 1.3. dim M-dim F(G, M)>dim G-m(G).

Proof. If F(G, M) is empty, then the inequality is clear from (1.2). If F(G, M) is non-empty, let $n=\dim F(G, M)$ and let F_a be an n-dimensional connected component of F(G, M). For $x \in F_a$,

$$T_x M = T_x(F_a) \oplus N_x$$

as G-vector spaces, where N_x is a normal space of F_a in M. Then there is a non-zero vector $v \in N_x$ with $G_v \neq G$. Thus

$$\dim G - m(G) \leq \dim G/G_v < \dim N_x = \dim M - n$$
.

q.e.d.

Lemma 1.4. If

$$\dim M - \dim F(T, M) \leq \dim G - m_0(G)$$

and

$$\dim F(G, M) < \dim F(T, M)$$
,

then

$$M = G \cdot F(H, M)$$
.

Here H is a compact connected subgroup of G such that

$$\dim H = m_0(G)$$
 and $\operatorname{rank} H = \operatorname{rank} G$.

Proof. Let $k=\dim F(T, M)$ and denote by F^k the union of k-dimensional connected components of F(T, M). Then

$$F^k - F(G, M)$$

is non-empty by the assumption. For $x \in F^k - F(G, M)$,

$$T_x M = T_x (G \cdot x) \oplus N_x$$

as G_x -vector spaces, where N_x is a normal space of the orbit $G \cdot x$ in M. Since $T \subset G_x$, $F(T, G \cdot x)$ is a non-empty finite set by Lemma 1.1. Thus

$$\begin{aligned} k &= \dim F(T, T_x M) = \dim F(T, N_x) \\ &\leq \dim N_x = \dim M - \dim G/G_x \leq \dim M - \dim G + m_0(G) . \end{aligned}$$

On the other hand,

$$k \geqslant \dim M - \dim G + m_0(G)$$

by the assumption. Therefore

$$\dim G_x = m_0(G),$$

$$(2) F(T, N_x) = N_x.$$

Since the action of G_x on N_x is a slice representation at x, a pricocipal isotropy group H' contains T by (2), and hence

$$\dim H' = m_0(G)$$

by (1). Let H be the identity component of the principal isotropy group H'. Then we have

$$M = G \cdot F(H, M) = \{g \cdot x | g \in G, x \in F(H, M)\}$$
.

q.e.d.

Lemma 1.5. If

$$\dim M - \dim F(T, M) \leq \dim G - m(G)$$
,

then $m(G) = m_0(G)$ and

$$M = G \cdot F(H, M)$$
.

Here H is a compact connected subgroup of G such that

$$\dim H = m(G)$$
 and $\operatorname{rank} H = \operatorname{rank} G$.

Proof. Taking account of Lemma 1.3 and using similar arguments as in the proof of Lemma 1.4, we can prove this lemma.

Lemma 1.6. Let G be a compact connected Lie group and let H be a closed subgroup of G such that

$$\dim H = m_0(G)$$
 and $\operatorname{rank} H^0 = \operatorname{rank} G$.

Then $N(H)^0=H^0$, where H^0 is the identity component of H and N(H) is the normalizer of H in G.

Proof. Assume $N(H)^0 \pm H^0$. Then the assumption on H implies N(H) = G. Thus H is a normal subgroup of G, and hence

$$\operatorname{rank} G = \operatorname{rank} H^0 + \operatorname{rank} G/H$$
.

Then the assumption on H implies rank G/H=0 and hence G=H. But this is a contradiction to

$$\dim H = m_0(G) < \dim G$$
.

q.e.d.

Lemma 1.7. Let G be a compact connected semi-simple Lie group and let H be a closed connected subgroup of G such that

$$\dim H = m_0(G)$$
 and $\operatorname{rank} H = \operatorname{rank} G$.

Let V be a real G-vector space such that

$$V = G \cdot F(H, V)$$
 and $F(G, V) = \{0\}$.

Then S(V)=G/H as G-manifolds and $N(H)/H=Z_2$. Here S(V) is a G-invariant unit sphere of V.

Proof. By the assumption on H and V, the identity component of an isotropy subgroup at each point of S(V) is conjugate to H in G. Hence there is an equivariant diffeomorphism

$$S(V) = G/H \underset{N(H)/H}{\times} F(H, S(V))$$

as G-manifolds. Here F(H, S(V)) is a unit sphere of F(H, V). Since N(H)/H is a finite group by Lemma 1.6, the natural projection

$$G/H \times F(H, S(V)) \rightarrow S(V)$$

is a finite covering as G-manifolds. On the other hand, S(V) is simply connected, because G is simi-simple. Therefore

$$S(V) = G/H$$

as G-manifolds and F(H,S(V)) is a zero-sphere S^0 . Finally,

$$N(H)/H = F(H, G/H) = F(H, S(V)) = S^{0}$$
.

Thus $N(H)/H=Z_2$, the cyclic group of order 2.

q.e.d.

2. Proof of theorems

Let G be a compact connected Lie group and let T be a maximal torus of G. Let M be a connected manifold with a non-trivial smooth G-action. It is easy to see that

$$F(T, M) = M$$
 implies $F(G, M) = M$.

Thus

$$\dim M - \dim F(T, M) \geqslant 2$$
,

because

$$\dim M \equiv \dim F_a \pmod{2}$$

for each connected component F_a of F(T, M).

If G is not semi-simple, then

$$\dim G - m(G) = 1$$

and hence there is nothing to prove. In particular, if

$$\dim M - \dim F(T, M) = \dim G - m(G)$$
,

then G is semi-simple, and $m(G)=m_0(G)$ by Lemma 1.5.

Now we assume that G is semi-simple and there is a closed connected subgroup H of G such that

(*)
$$M = G \cdot F(H, M)$$
, dim $H = m_0(G)$ and rank $H = \text{rank } G$.

Moreover, (i) first suppose that F(G, M) is empty. Then by the assumption (*), the identity component of an isotropy subgroup at each point of M is conjugate to H in G. Hence there is an equivariant diffeomorphism

$$M = G/H \underset{\mathbb{N}(H)/H}{\times} F(H, M)$$

as G-manifolds. Since N(H)/H is a finite group by Lemma 1.6, the natural projection

$$p: G/H \times F(H, M) \to M$$

is a finite covering as G-manifolds. Hence we obtain

$$F(T, M) = p(F(T, G/H) \times F(H, M)).$$

Here F(T, G/H) is a non-empty finite set by Lemma 1.1. Therefore

$$\dim M - \dim F_a = \dim M - \dim F(H, M)$$

$$= \dim G/H = \dim G - m_0(G),$$

for each connected component F_a of F(T, M).

(ii) Next suppose that F(G, M) is non-empty. Then each fibre N_x of the normal G-vector bundle of F(G, M) in M satisfies the hypothesis of Lemma 1.7, and hence

$$N(H)/H = Z_2$$
 and $S(N_x) = G/H$.

Let U be a G-invariant closed tubular neighborhood of F(G, M) in M. Then there is an equivariant diffeomorphism

$$M = \partial (D(V) \times F(H, M - \text{int } U))/Z_2$$

as G-manifolds. Here V is a real G-vector space (unique up to G-isomorphism) with S(V)=G/H, Z_2 acts on the unit disk D(V) as antipodal involution, and G acts naturally on D(V) and trivially on F(H, M-int U). Hence we obtain

$$F(T, M) = \partial(F(T, D(V)) \times F(H, M - \text{int } U))/Z_2$$

= $\partial([-1, 1] \times F(H, M - \text{int } U))/Z_2$.

Therefore

$$\dim M - \dim F_a = \dim M - \dim F(H, M - \operatorname{int} U)$$

$$= \dim D(V) - 1$$

$$= \dim G/H$$

$$= \dim G - m_0(G),$$

for each connected component F_a of F(T, M).

Now the proofs of Theorem 1 and Theorem 2 are completed by Lemma 1.4 and Lemma 1.5.

3. Integers m(G) and $m_0(G)$

In this section we show certain properties of m(G) and $m_0(G)$. It is easy to see that

(3.1)
$$m(G_1 \times G_2) \geqslant \max(m(G_1) + \dim G_2, \dim G_1 + m(G_2)),$$

and

$$(3.2) m(G) \geqslant 1, \text{if } G \neq S^1.$$

Lemma 3.3. Let G_1 and G_2 be compact connected Lie groups. Suppose that G_1 is simple and $G_1 \neq S^1$. Let H be a closed connected subgroup of $G_1 \times G_2$ with dim $H=m(G_1 \times G_2)$. Then

$$H = H_1 \times G_2$$
 or $H = G_1 \times H_2$

where H_a is a closed subgroup of G_a (a=1, 2) with dim $H_a=m(G_a)$.

Proof. Let p_a : $G_1 \times G_2 \rightarrow G_a$ (a=1, 2) be natural projections, and let i_a : $G_a \rightarrow G_1 \times G_2$ be natural injections defined by

$$i_1(g) = (g, e_2), g \in G_1$$

 $i_2(g) = (e_1, g), g \in G_2$

where e_a is the identity element of G_a (a=1, 2). Define

$$H_a = p_a(H)$$
 and $H_{a'} = i_a^{-1}(H)$.

Then H_a is a normal subgroup of H_a (a=1, 2) and $H_1 \times H_2$ is a normal subgroup of H, and $H \subset H_1 \times H_2$. Moreover the projection p_a induces an isomorphism

$$p_a'$$
: $H/H_1' \times H_2' \rightarrow H_a/H_a'$ $(a = 1, 2)$.

(i) First suppose $H_1 \neq G_1$. Then

$$H \subset p_1^{-1}(H_1) = H_1 \times G_2 + G_1 \times G_2$$
.

Hence we obtain

$$H = H_1 \times G_2$$
 and dim $H_1 = m(G_1)$

from the assumption dim $H = m(G_1 \times G_2)$.

(ii) Next suppose $H_1=G_1$. Then H_1' is a normal subgroup of the simple Lie group G_1 and hence $H_1'=G_1$ or H_1' is a finite group. Since $m(G_1) \ge 1$ and

there is an isomorphism

$$H/i_1(H_1')=H_2$$
,

we obtain

$$m(G_1 \times G_2) = \dim H = \dim H_1' + \dim H_2$$

$$< \dim H_1' + m(G_1) + \dim G_2 \leq \dim H_1' + m(G_1 \times G_2).$$

Thus dim $H_1' \neq 0$, and hence

$$H_1' = H_1 = G_1$$
.

Therefore

$$H = G_1 \times H_2$$
 and dim $H_2 = m(G_2)$

from the assumption dim $H=m(G_1\times G_2)$.

q.e.d.

Corollary 3.4. Let G_1 and G_2 be compact connected Lie groups. Suppose that G_1 is simple. Then

$$\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min (\dim G_1 - m(G_1), \dim G_2 - m(G_2)).$$

Proof. If $G_1 \neq S^1$, Then the equation follows from Lemma 3.3. If $G_1 = S^1$, then $m(G_1 \times G_2) = \dim G_2$ and hence the equation holds. q.e.d.

Theorem 3.5. Let G_1 and G_2 be compact connected Lie groups. Then

$$\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min (\dim G_1 - m(G_1), \dim G_2 - m(G_2)).$$

Proof. Let G^* be a compact connected covering group of G. Then it is easy to see that

$$m(G^*) = m(G)$$
.

There are covering groups G_a^* of G_a (a=1, 2) such that

$$G_1^* = H_1 \times \dots \times H_r \times T^m$$

$$G_2^* = K_1 \times \dots \times K_s \times T^s$$

where H_i , K_j are compact connected non-abelian simple Lie groups, and T^m , T^n are tori. If m or n is non-zero, then

$$\dim (G_1 \times G_2) - m(G_1 \times G_2) = 1$$

 $\min (\dim G_1 - m(G_1), \dim G_2 - m(G_2)) = 1$.

Next, if m=n=0, then

$$\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min_{i,j} (\dim H_i - m(H_i), \dim K_j - m(K_j))$$

$$= \min (\dim G_1 - m(G_1), \dim G_2 - m(G_2))$$

be Corollary 3.4. q.e.d.

REMARK 3.6. The integer $m_0(G)$ can be defined only when G is non-abelian (i.e. G does not coincide with its maximal torus).

Theorem 3.7. Let G_1 and G_2 be compact connected non-abelian Lie groups. Then

$$\dim (G_1 \times G_2) - m_0(G_1 \times G_2) = \min (\dim G_1 - m_0(G_1), \dim G_2 - m_0(G_2))$$
.

Proof. Let H be a closed connected subgroup of $G_1 \times G_2$ such that

$$\dim H = m_0(G_1 \times G_2)$$
 and $\operatorname{rank} H = \operatorname{rank} (G_1 \times G_2)$.

Then there are closed connected subgroups H_a of G_a (a=1, 2) such that

$$H = H_1 \times H_2$$
 and rank $H_a = \operatorname{rank} G_a$ ($a = 1, 2$)

from the assumption rank H=rank $(G_1 \times G_2)$. Moreover

$$\dim H = m_0(G_1 \times G_2)$$

implies that

$$H_1 = G_1$$
 and dim $H_2 = m_0(G_2)$

or

$$H_2 = G_2$$
 and dim $H_1 = m_0(G_1)$.

q.e.d.

Table of m(G) and $m_0(G)$ for simple Lie group G (cf. [1], [2])

G	$\dim G$	m(G)	H	$m_0(G)$	U
$SU(n), n \neq 4$	n^2-1	$(n-1)^2$	$S(U(n-1)\times U(1))$	$(n-1)^2$	$S(U(n-1)\times U(1))$
SU(4)	15	10	Sp(2)	9	$S(U(3) \times U(1))$
SO(2n+1)	$2n^2+n$	$2n^2-n$	SO(2n)	$2n^2-n$	SO(2n)
Sp(n)	$2n^2+n$	$2n^2-3n+4$	$Sp(n-1)\times Sp(1)$	$2n^2-3n+4$	$Sp(n-1)\times Sp(1)$
SO(2n), n>3	$2n^2-n$	$2n^2-3n+1$	SO(2n-1)	$2n^2-5n+4$	$SO(2n-2)\times SO(2)$
G_2	14	8	SU(3)	8	SU(3)
F_4	52	36	Spin(9)	36	Spin(9)
E_6	78	52	F_4	46	
E_7	133	79		79	
E_8	248	136		136	

Here H, U are closed connected subgroups of G with dim H=m(G), dim $U=m_0(G)$ and rank $U=\operatorname{rank} G$

OSAKA UNIVERSITY

References

- [1] A. Borel-J. De Siebenthal: Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221.
- [2] L.N. Mann: Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532-546.