PERFECT CATEGORIES III : HEREDITARY AND QF-3 CATEGORIES

メタデータ	言語: English
	出版者: Osaka University and Osaka City University,
	Departments of Mathematics
	公開日: 2024-09-09
	キーワード (Ja):
	キーワード (En):
	作成者: 原田, 学
	メールアドレス:
	所属:
URL	https://ocu-omu.repo.nii.ac.jp/records/2008316

PERFECT CATEGORIES III

(HEREDITARY AND QF-3 CATEGORIES)

Manabu HARADA

(Received July 24, 1972)

Recently the author has defined perfect or semi-artinian Grothendieck categories with some assumptions [8], as a generalization of cagegories of modules in [1].

Further he has generalized essential results in [6] to such categories [9]. This note is a continuous work to give a generalizations of results in [3], [4] and [5].

Let R be a ring with identity. R.M. Thrall defined a QF-3 algebra in [3] and many authors defined QF-3 rings and studied them (cf. [10]).

R is called right QF-3 if R has a minimal a fithful right R-module and R is called right QF-3⁺ if the injective hull $E(R_R)$ is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories \mathfrak{A} with generating set of finitely generated objects, (which are equivalent to group valued functor categories (\mathfrak{C}^{0} , Ab) by [8], Theorem 3).

We shall completely determin structures of hereditary (more weakly locally PP) and perfect QF-3 (resp, QF-3+) or semi-perfect and semi-artinian QF-3 (resp. QF-3+, however this is a case of QF-3) categories \mathfrak{A} . Furthermore, we shall show that \mathfrak{A} is equivalent to product of \mathfrak{A}_{α} and \mathfrak{A}_{α} is the full subcategory \mathfrak{M}_{S}^{+1} , where S is the ring of upper (resp. lower) tri-angular matrices of a division ring over a well ordered set I, almost all of whose entries are zero, such that if \mathfrak{A} is QF-3 I has the last element (resp. if \mathfrak{A} , is semi-artinian QF-3+, then I has the last element and hence, \mathfrak{A} is QF-3) and vice versa with some restrictions. Those results are generalizations of I-4 and I-5.

1. Preliminary results

Let $\mathfrak A$ be a Grothendieck category with generating set of finitely generated objects. If every object (resp. finitely generated object) has a projective cover, then $\mathfrak A$ is called *perfect* (resp. *semi-perfect*). On the other hand, if every non-zero object has the non-zero socle, $\mathfrak A$ is called *semi-artinian*.

¹⁾ see §1,

358 M. Harada

If $\mathfrak A$ is semi-perfect, then $\mathfrak A$ has a generating set of completely indecomposable projective $\{P_{\alpha}\}_{I}$. Let $(\{P_{\alpha}\}^{\circ}, Ab)$ be the additive contravariant functor category of the pre-additive category $\{P_{\alpha}\}$ to the category Ab of abelian groups. Put $R = \sum_{\alpha,\beta \in I} \bigoplus [P_{\alpha}, P_{\beta}]$. Then R is called the *induced ring* from $\mathfrak A$ by $\{P_{\alpha}\}$. By e_{α} we shall denote idempotents $1_{P_{\alpha}}$ in R. Let $\mathfrak M_R$ be the category of all right R-modules. By $\mathfrak M_R^+$ we denote the full subcategory of $\mathfrak M_R$ whose objects consist of all M such that MR = M. Then

Theorem A ([8], Theorem 3). Let $\mathfrak A$ be as above Then the following are equivalent.

- 1) A is semi-perfect.
- 2) $\mathfrak{A} \approx (\{P_{\alpha}\}^{\circ}, \text{Ab}).$
- 3) $\mathfrak{A} \approx \mathfrak{M}_R^+$.

In this note, we only consider a semi-perfect category $\mathfrak A$ and hence, $\mathfrak A$ will be identified with $(\{P_{\alpha}\}^{\circ}, Ab)$ or $\mathfrak M_R^+$ in the following. We note in this case $e_{\alpha}R$ corresponds to P_{α} and $e_{\alpha}Re_{\beta}\approx [P_{\beta}, P_{\alpha}]$.

We shall make use of same notations in [8] and [9] without further comments and categorical terminologies in [11]. Rings in this note do not contain identities in general.

2. Locally PP-categories

Let $\mathfrak A$ be a semi-perfect Grothendieck category with generating set of finitely generated. If $\{P_{\alpha}\}$ and $\{Q_{\beta}\}$ are generating sets of $\mathfrak A$ such that P_{α} and Q_{β} are completely indecomposable and projetve, then P_{α} is isomorphic to some Q_{β} and vice versa by Krull-Remak-Schmidt's theorem. Let R be the induced ring from $\mathfrak A$ by $\{P\}_{\alpha}$, $R=\sum \oplus [P_{\alpha}, P_{\beta}]$. If fR is projective in $\mathfrak M_R^+$ for any α and β any element f in $[P_{\alpha}, P_{\beta}]$, $\mathfrak A$ is called a *locally (right) PP-category*, (we called it "partially" in [3]).

This is equivalent to a fact that every functor T_f in $(\{P_{\alpha}\}^{\circ}, Ab)$ defined by $T_f(P_{\gamma}) = fRe_{\gamma}$ is representative for every $f \in [P_{\alpha}, P_{\beta}]$. We define similarly a left PP-category.

We can easily see from the following lemma that right PP-categories are also left PP-categories and that this defintion dose not depend on $\{P_{\alpha}\}$.

Lemma 1. Let \mathfrak{A} be a semi-perfect Grothendieck category with a generating set $\{P_{\alpha}\}$ as above. Then \mathfrak{A} is locally PP if and only if any $f \in [P_{\alpha}, P_{\beta}]$ is zero or monomorphic, (cf. [9], Proposition 3).

Proof. We assume that $\mathfrak A$ is locally PP and $0 \neq f \in [P_{\omega}, P_{\beta}]$. Since $fe_{\omega} = f$, $0 \leftarrow fR \overset{\times}{\leftarrow} e_{\omega}R$ is exact. Further, $e_{\omega}R$ is indecomposable, and hence, $fR \overset{\times}{\approx} e_{\omega}R$.

Put K=Ker f and $i\colon K\to P_{\alpha}$. If $i\neq 0$, there exists P_{γ} and $h\in [P_{\gamma},K]$ such that $0\neq ih\in [P_{\gamma},P_{\alpha}]\subseteq R$. Then $0=fih=fe_{\alpha}ih$ and $e_{\alpha}ih\in e_{\alpha}R$. Hence, $ih=e_{\alpha}ih=0$, which is a contradiction. Therefore, f is monomorphic. Conversely, if f is monomorphic, then a mapping $\psi\colon fR\to e_{\alpha}R(\psi(fr)=e_{\alpha}r)$ is isomorphic. Hence, fR is projective in \mathfrak{M}_{R}^{+} .

As an analogy of Theorem 4 in [9], we have

Theorem 1 ([9]). Let $\mathfrak A$ be a semi-perfect Grothendieck category with generating set of finitely generated object. Then $\mathfrak A$ is locally PP and perfect (resp. semi-artinian) if and only if $\mathfrak A$ is equivalent to $[I, \mathfrak A_i]^r$ (resp. $[I, \mathfrak A_i]^t$) with functors T_{ij} such that $\psi_{kji} \colon T_{kj}(B) \to T_{ki}(P)$ for k > j > i (resp. k < j < i) is monomorphic, for any minimal object B in $T_{ji}(P)$ and $P \in \mathfrak A_i$, where $\mathfrak A_i$'s are semi-simple categories with generating sets.

Proof. We assume that \mathfrak{A} is locally PP and $\{P_{\alpha}\}$ is a generating set of completely indecomposable projectives. Making use of Lemma 1 and the proof of Theorem 4 in [9] we know that \mathfrak{A} is equivalent to $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^l$) and that $\{P_{\alpha}^{(i)} = \tilde{S}_i(P_{i\alpha})\}^2$ (resp. $\{S_i(P_{i\alpha})\}$) is a generating set in $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^l$), where $\{P_{i\alpha}\}$ is a generating set of \mathfrak{A}_i and $P_{i\alpha}$ is minimal. Since $f \in [P_{\alpha}^{(i)}, P_{\beta}^{(j)}]$ is monmomorphic by Lemma 1, we have the conditions in the theorem. The converse is also clear from the structure of $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^l$) and Lemma 1.

REMARK. If we replace a minimal objects B in the above condition by any finite coproduct of B_{α_i} , it is equivalent to the condition (*)-1 in Theorem 3 in [9]. Hence, this fact gives us the defference between semi-hereditaty and locally PP. We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. Let \mathfrak{A} be as in Theorem 1 and $\{P_{\omega}\}$ a generating set of completely indecomposable projectives. If \mathfrak{A} is locally PP, then the following are equivalent.

- 1) All P_a are J-nilpotent.
- 2) $1L(P_{\alpha}) < \infty$ for all α .
- 3) A is semi-artinian.

Futhermore, the following are equivalent.

- 1) $rL(P_{\alpha}) < \infty$ for all α .
- 2) A *is perfect*, (cf. [9], Theorem 6).

3. QF-3 categories

Let $\mathfrak A$ be a Grothendieck category with generating set of projectives $\{P_{\alpha}\}$. An object C in $\mathfrak A$ is called *faithful* if for any non-zero morphism $f: P_{\alpha} \to P_{\beta}$, there exists $g \in [P_{\beta}, C]$ such that $gf \neq 0$. Let $\{Q_{\beta}\}$ be another generating set of projectives.

²⁾ see [8], §3.

360 M. HARADA

tives and $f' \neq 0 \in [Q_{\epsilon}, Q_{\delta}]$. Since $Q_{\epsilon} \oplus Q_{\epsilon}' = \sum_{J} \oplus P_{\alpha}$ and $Q_{\delta} \oplus Q_{\delta}' = \sum_{J'} \oplus P_{\beta}$, we have a non-zero morphim $f: \sum_{J} \oplus P_{\alpha} \to \sum_{J'} \oplus P_{\beta}$ such that $f \mid Q_{\epsilon} = f'$ and $f \mid Q_{\epsilon}' = 0$. Hence, there exist α , β such that $(p_{\beta}f \mid P_{\alpha}) \neq 0$, where p_{β} is the projection of $\sum_{J'} \oplus P_{\beta}$ to P_{β} . Then we have $g' \in [P_{\beta}, C]$ such that $g'(p_{\beta}f \mid P_{\alpha}) \neq 0$. Hence, $g'p_{\beta}f \neq 0$. Let $i_{Q_{\epsilon}}$ and $i_{Q_{\delta}}$ be inclusions. Peut $g'p_{\beta}i_{Q_{\delta}} = g \in [Q_{\delta}, C]$. Then $g'p_{\beta}fi_{Q_{\delta}} = g'p_{\beta}i_{Q_{\delta}}f' = gf'$ and $\ker f = Q_{\epsilon'}$. Therefore, $\operatorname{gf}' \neq 0$. Thus, we have shown that the faithfulness of C dose not depend on generating sets of projectives.

Let $(\mathfrak{C}^{\circ}, Ab)$ be the contravariant additive functor category, where \mathfrak{C} is the small pre-additive category $\{P_{\mathfrak{a}}\}$. Then \mathfrak{A} is equivalent to $(\mathfrak{A}^{\circ}, Ab)$. Hence C is faithful and only if the corresponding functor in the above is a faithful functor. Furthermore, $(\mathfrak{C}^{\circ}, Ab)$ is eqivalent to \mathfrak{M}_{R}^{+} , where R is the induced ring from $\{P_{\mathfrak{a}}\}$. Then faithful functors correspond to faithful modules in \mathfrak{M}_{R}^{+} .

An object M is called a *minimal faithful* if M is faithful and every faithful object is a coretract of M. According to R.M. Thrall [13], we call \mathfrak{A} QF-3 if \mathfrak{A} contains a minimal faithful object M or equivalently, if \mathfrak{M}_R^+ has a minimal faithful module.

From now on we shall assume that $\mathfrak A$ is a Grothendieck category with generating set of small projectives P_{α} . Further, we shall assume that $\mathfrak A$ is a locally PP and semi-perfect category and hence, we may assume that all P_{α} are completely indecomposable and $P_{\alpha} \approx P_{\beta}$ for $\alpha \neq \beta$.

Every object A in $\mathfrak A$ has an injective hull of A in $\mathfrak A$ (see [11], p. 89, Theorem 3.2). We denote it by E(A). If $E(\sum_{I} \oplus P_{\sigma})$ is projective, $\mathfrak A$ is called $QF-3^+$ (see [2]).

Let Q be an injective envelope of R in \mathfrak{M}_R^+ and M a minimal faithful module in \mathfrak{M}_R^+ . Then M is a retract of Q and hence, M is injective. Furthermore, since R is faithful, M is also a retract of R. Therefore, M is projective, and injective and we may assume that M is a right ideal of R.

Since R is semi-perfect, $R = \sum_{I} \oplus e_{\alpha}R$ and $e_{\alpha}Re_{\alpha}$'s are local rings. In the proof of theorem 4 in [9], we considered indecomposable projective objects P in \mathfrak{M}_{R}^{+} such that $[P, e_{\alpha}R] = 0$ for all $e_{\alpha}R \approx P$. We call such P belonging to the first block. Contrary, if $[e_{\alpha}R, P] = 0$, P is called belonging to the last bolck.

Lemma 2. Let \mathfrak{A} be a locally PP and QF-3 semi-perfect Grothendieck category and R the induced ring. Then a minimal faithful object is a coproduct of $e_{a_i}R$'s which belong to the first block.

Proof. Since M is injective and a retract of $\sum_{I} \oplus e_{\alpha} R$, $M = \sum_{J} \oplus e_{\alpha_{i}} R$ by [14], Lemma 2. Further, since $e_{\alpha_{i}} R$ is injective $[e_{\alpha_{i}} R, eR] = 0$ by Lemma 1 if $e_{\alpha_{i}} R \approx eR$. Hence, $e_{\alpha_{i}} R$ belongs to the first block.

Lemma 3. Let \mathfrak{A} be as above and $\sum_{J} \oplus e_{i}R$ a minimal faithful ideal. Then for any $\delta \in I$ there exist $\varphi(\delta)$ in J such that $e_{\varphi(\delta)}Re_{\delta} \neq 0$.

Proof. Let x be a non-zero element in $e_{\delta}Re_{\delta}$. Since $\sum_{I} \oplus e_{i}R = \sum_{J,I \ni \sigma} \oplus e_{i}Re_{\sigma}$ is faithful, $e_{\varphi(\delta)}Re_{\delta}x \neq 0$ for some $\varphi(\delta)$.

Let e_i be as above. We put $R(i) = \{ \gamma \mid \in I, e_i Re_{\gamma} \neq 0 \}$.

Lemma 4. Let \mathfrak{A} be as above and further perfect. Then R(i) contains the last element δ in R(i) namely, $e_i Re_{\delta} \neq 0$ and $e_{\delta} R$ belongs to the last block.

Proof. We assume that R(1) does not contain the last element in R(1). Put $N = \sum_{\gamma \in \mathbb{R}^{(1)}} \oplus e_1 R / (\sum_{\epsilon \geqslant \gamma} e_1 R e_\epsilon) \oplus \sum_{j \geqslant 2} \oplus e_j R$ and put $N_1 = \sum_{r \in \mathbb{R}^{(1)}} \oplus e_1 R / (\sum_{\epsilon \geqslant \gamma} e_1 R e_\epsilon)$, and $N_2 = \sum_{j \geqslant 2} \oplus e_j R$. We shall show that N is faithful in \mathfrak{M}_R^+ . Let $x = \sum x_{\alpha\beta}$, $x_{\alpha\beta} \in e_{\alpha} R e_{\beta}$ and $x_{\alpha\beta} \neq 0$. If $\varphi(\alpha) \neq 1$, we take $0 \neq y \in e_{\varphi(\alpha)} R e_{\alpha} \in N_2$. Then $yx = \sum yx_{\alpha\beta} \in \sum \oplus e_{\varphi(\alpha)} R e_{\beta}$ and $yx \neq 0$ by Theorem 1, since $e_{\delta} R e_{\delta}$ is a division ring by Lemma 1. We assume $\varphi(\alpha) = 1$. Then $\alpha \in \mathbb{R}(1)$ and there exists $y \in e_1 R e_{\alpha}$ and $0 \neq yx_{\alpha\beta} \in e_1 R e_{\beta}$. Hence, $\beta \in \mathbb{R}(1)$. Since $\mathbb{R}(1)$ does not have the last element, we obtain γ in $\mathbb{R}(1)$ such that $\beta < \gamma$. Hence $\{y + (\sum_{\epsilon \geqslant \gamma} e_1 R e_{\epsilon})\}x \neq 0$. Therefore, N is faithful and N contains a submodule N_0 which is isomorphic to $e_1 R$. Then $N_0 = nR \approx e_1 R$ and $ne_1 = n$. Since $e_j R e_1 = 0$ for $j \geqslant 2$, $n \in N_1$. Let $n = \sum_{i=1}^n \overline{r}_{\gamma_i}, \overline{r}_{\gamma_i} \in e_1 R / (\sum_{\gamma_i \le \epsilon} e_1 R e_{\epsilon})$. Then $n(e_1 R e_{\gamma}) = 0$ for $\gamma = \max(\gamma_i)$. However, $e_1(e_1 R e_{\gamma}) \neq 0$. Which is a contradiction.

Theorem 3 ([4], Theorem 1). Let \mathfrak{A} be a perfect or semi-perfect and semi-artinian and locally PP-Grothendieck category with a generating set of small preojectives $\{G_{\gamma}\}_{I}$. If \mathfrak{A} is QF-3, there exist non-isomorphic indecomposable and projective objects $\{P_{\alpha}\}_{J}$ (resp. $\{Q_{\beta}\}_{J}$) such that

- 1) $\{P_{\omega}\}\$ (resp. $\{Q_{\beta}\}\$) is an isomorphic representative class of the projectives in the first (resp. last) block,
- 2) $\sum \oplus P_{\sigma}$ is a minimal faithful and injective object and
- 3) each P_{α} contains the unique minimal subobject S_{α} which is isomorphic to Q_{α} . Hence $[S_{\alpha}: \Delta_{\alpha}]=1$ and S_{α} is projective in \mathfrak{M}_{R}^{+} where $\Delta_{\alpha}=[Q_{\alpha}, Q_{\alpha}]$ is a division ring. Furthermore, any indecomposable projective is isomorphic to a subobject in some P_{α} .

Proof. We shall prove the theorem on the induced ring $R = \sum \bigoplus e_{\sigma}R$; $e_{\sigma}R \approx e_{\beta}R$ if $\alpha \neq \beta$. We know from Lemmas 2 and 3 that $\sum_{I} \bigoplus e_{i}R$ is a minimal faithful ideal, $e_{i}R$ belongs to the first block and $e_{i}R$ contains a submodule $e_{i}Re_{\gamma_{i}}$ where γ_{i} is the last element in R(i). Since $e_{\gamma_{i}}Re_{\epsilon}=0$ for $\epsilon \neq \gamma_{i}$, $\tau_{i}=e_{i}Re_{\gamma_{i}}$ is a right ideal. Put $\Delta_{i}=e_{\gamma_{i}}Re_{\gamma_{i}}$, then Δ_{i} is a division ring by Lemma 1. $e_{i}R$ is

362 M. Harada

indecomposable and injective. On the other hand, any Δ_i -submodule of \mathfrak{r}_i is a R-module. Hence, $[\mathfrak{r}_i:\Delta_i]=1$ and \mathfrak{r}_i is the unique minimal subideal in e_iR . Since $\mathfrak{r}_i\approx e_{\gamma_i}Re_{\gamma_i}=e_{\gamma_i}R$, \mathfrak{r}_i is projective. Furthermore, $\mathfrak{r}_i\approx \mathfrak{r}_j$ if $i\neq j$, since $e_iR\approx e_iR_j$ and e_iR , e_jR are injective hull of \mathfrak{r}_i and \mathfrak{r}_j , respectively. Let $e_\delta R$ be in the last block. Then $e_{\varphi(\delta)}Re_\delta = 0$ and $\varphi(\delta) \in J$. Hence, $e_{\varphi(\delta)}Re_\delta = \mathfrak{r}_{\varphi(\delta)}$. Therefore, $\{e_{\gamma_i}R\}$ is an isomorphic respresentative class of projectives in the last block. Let $\varepsilon \in I-J$. Then $e_{\varphi(\varepsilon)}Re_\varepsilon = 0$ by Lemma 3. Hence, $[e_\varepsilon R, e_{\varphi(\varepsilon)}R] \neq 0$, which means that $e_\varepsilon R$ does not belong to the first block. Furthermore, $e_\varepsilon R$ is ismorphic into $e_{\varphi(\varepsilon)}R$ by Lemma 1.

Lemma 5. Let R be the induced ring from a locally PP-Grothendieck category with generating set $\{P_{\omega}\}$ as above. We assume that $\{e_iR\}_J$ is a set of injective objects such that E=E(R) in \mathfrak{M}_R^+ is an essential extension of $\sum_J \bigoplus e_i R^{(K_i)}$. Then any $f \in [e_{\beta}R, E]$ is either zero or monomorphic, where $e_i R^{(K_i)} = \sum_{K_i} \bigoplus e_i R$ and e_{β} is any primitive idempotent.

Proof. We assume $f \neq 0$. Then $\mathfrak{r} = f^{-1}(\sum_{i=1}^n e_{i_i}R) \neq 0$ for some e_{i_i} . Since $\sum_{i=1}^n e_{i_i}R$ is injective, $f \mid \mathfrak{r}$ is extended to $g \in [e_{\beta}R, \sum_{i=1}^n e_{i_i}R]$. Then g is monomorphic by Lemma 1. Therefore, f is monomorphic.

Theorem 4. Let $\mathfrak A$ be a perfect, locally PP-Grothendieck category with generating set of small projectives. Then $\mathfrak A$ is QF-3⁺ if and only if every projective P_{γ} in the first block are injective and for any indecomposable projective P, there exists P_{α} in $\{P_{\gamma}\}$ that $[P, P_{\alpha}] \neq 0$. Hence, $\{P_{\tau}\}$ is an isomorphic reprensentative class of all projective and injective indecomposable objects.

Proof. Let R be the induced ring from completely indecomposable projectives P_{α} . We assume \mathfrak{A} is QF-3⁺. Then E=E(R) is isomorphic to $\sum_{j \in J} e_{\alpha_j} R^{(K_j)}$, It is clear that $e_{\alpha_j} R$ belongs to the first block from Lemma 1. For any projective $e_{\beta} R$, $E(e_{\beta} R) \subset E$. Hence, $[e_{\beta} R, e_{\alpha_j} R] \neq 0$ for some j, which implies $\{e_{\alpha_j} R\}$ consist of all projectives in the first block. Conversely, we assume that all projectives $\{e_i R\}_J$ in the first block are injective and have the property in the theorem. Since $[e_{\beta} R, e_i R] \neq 0$ for any $e_{\beta} R, E \supset \sum_{K_i, J} \oplus e_i R^{(K_i)} \supset R$ for suitable indices K_i . We assume $E \neq \sum_{K_j, J} \oplus e_j R^{(K_j)}$. Then there exists $g \in [e_k R, E]$ such that $Im g \oplus \sum_{i \in J} \bigoplus_{j \in I} e_j R^{(K_j)}$. On the other hand, we obtain $g' \in [e_k R, E_0]$ such that $g' \mid g^{-1}(E_0) = g$ from the proof of Lemma 5, where E_0 is a finite coproduct of $e_j R$'s. Then $(g-g') \mid E_0 = 0$. Therefore, g=g' by Lemma 5, which is a contradiction.

REMARK. The fact $[e_{\beta}R, e_{\alpha_j}R] \neq 0$ is equivalent to the validity of Lemma 3 for the above \mathfrak{A} .

Theorem 4'. Let \mathfrak{A} be a semi-perfect, semi-artinian and locally PP-Grothen-dieck category with generating set of small projectives. Then \mathfrak{A} is QF-3⁺ if and only if \mathfrak{A} contains projectives P_{α} in the first block and all of such P_{α} are injective and for any indecomposable projective P, there exists P_{α} such that $[P, P_{\alpha}] \neq 0$. Hence, $\{P_{\alpha}\}$ consist of all projective and injective indecomposable objects. In this case \mathfrak{A} is QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).

Proof. We assume \mathfrak{A} is QF-3⁺. Let S be the socle of E = E(R) and $S = \sum \oplus S_{\gamma}$, where S_{γ} 's are minimal objects in E. Then E = E(S) and $E_{\gamma} = E(S_{\gamma})$ is imdecomposable and projective by the assumption. Hence, from [8], Corollary 1 to Lemma 2 $E_{\gamma} \approx e_{\gamma} R$, which belongs to the first block. Let $e_{\beta} R$ be any indecomposable ideal. Then $E(e_{\beta}R) \subset E$. Hence, $[e_{\beta}R, e_{\gamma}R] \neq 0$ by Lemma 1 and the proof of Lemma 5. Since each $e_{\gamma}R$ has the non-zero socle, \mathfrak{A} is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The converse is similarly proved as in the proof of Theorem 4.

Lemma 6. Let \mathfrak{A} be as in Theorem 3 (resp. Theorem 4') and e_1R in the first block. Let η be the last (resp. first) element in R(1). Then R(1)=C(η). If \mathfrak{A} is as Theorem 4, R(1) $^{\gamma} \supseteq C(\gamma)$ for any $\gamma \in R(1)$ and for any δ and $\delta' \in (1)$ there exists ε in R(1) such that $e_{\delta}Re_{\varepsilon} \neq 0$ and $e_{\delta'}Re_{\varepsilon} \neq 0$, where R(1) $^{\gamma} = \{\alpha \mid \in R(1), \alpha \leq \gamma\}$ and $C(\eta) = \{\delta \mid \in I, e_{\delta}Re_{\eta} \neq 0\}$.

Proof. Let γ be in R(1) and δ be in $(I-R(1))^{\gamma}$. Then $e_{\varphi(\delta)}Re_{\delta} \neq 0$ and $\varphi(\delta) \neq 1$. We assume $e_{\delta}Re_{\gamma} \neq 0$. Then $e_{\varphi(\delta)}Re_{\gamma} \supset (e_{\varphi(\delta)}Re_{\delta})(e_{\delta}Re_{\gamma}) \neq 0$ by Theorem 1. We take non-zero element x, y in $e_{\varphi(\delta)}Re_{\gamma}$ and $e_{1}Re_{\gamma}$, respectively. Consider a mapping $\psi: xR \to yR$ such that $\psi(xr) = yr$. Then ψ is well defined and R-homomorphic by Theorem 1. Hence, $[e_{\varphi(\delta)}R, e_{1}R] \neq 0$, which is a contradiction. Therefore, $R(1)^{\gamma} \supset C(\gamma)$. Let x be a non-zero element in $e_{1}Re_{\gamma}$. Then xR is a projective and indecomposable ideal in $e_{1}R$ by the assumption.

Hence, $xR \stackrel{\psi}{\approx} e_q R$ for some q. Put $\psi(x) = e_q r$. Then $\psi(x) = \psi(xe_\gamma) = e_q re_\gamma$. This implies $q \leqslant \gamma$ (resp. $q \geqslant \gamma$). Similarly, we have $q \geqslant \gamma$ (resp. $q \leqslant \gamma$). We assume R(1) contains the last (resp. first) elemeny η . Then $e_\gamma Re_\eta \approx xRe_\eta =$ (the socle of e_1R) $\neq 0$. Hence, R(1)=C(η). Let $\gamma' \in R(1)$. Then $e_\gamma R$ and $e_{\gamma'} R$ are monomorphic to $e_1 R$. Since $e_1 R$ is injective, their images have a non-zero intersection r. Hence, $re_g \neq 0$ for some ε . Therefore, $e_\gamma Re_g \neq 0$ and $e_{\gamma'} Re_g \neq 0$.

Lemma 7 (cf. [12]). Let Δ be a division ring and I a well ordered set. Let $\{e_{ij}\}_I$ be a set of matrix units. Put $R = \sum_{1 \leq j \in I} \bigoplus e_{ij} \Delta$. Then $e_{11}R$ is injective and hence, R is hereditary and QF-3 in \mathfrak{M}_R^+ . R is QF=3 if and only of I contains the last element.

Proof. We first note that each $e_{ii}R$ contains only right ideals of form $e_{ij}R$ $i \le j$ and $[e_{ii}R, e_{11}R] \approx \Delta$. Let

364 M. HARADA

$$0 \longrightarrow N \longrightarrow M$$

$$\downarrow f$$

$$e_{11}R$$

be a given exact diagram in \mathfrak{M}_{R}^{+} . We shall extend f to M by the standard argument. We obtain a maximal extension $f_0: N_0 \rightarrow e_{11}R$ such that $N_0 \supset N$ and $f_0|N=f$. If $M \neq N_0$, there exists m in M such that $me_{ii} \notin N_0$, since $\{e_{ii}R\}$ is a generating set. Put $M'=N_0+me_{ii}R$ and $\mathfrak{r}=\{x\mid \in e_{ii}R, mx\in N_0\}$. Then \mathfrak{r} is a right ideal in $e_{ii}R$. Hence, $\mathfrak{r} \approx e_{ij}R$ for some j > i. We define $g: \mathfrak{r} \rightarrow e_{11}R$ by setting $g(x)=f_0(mx)$ for $x \in \mathbb{T}$. Then $e_{1i}|\mathbb{T}$ and g are in $[\mathbb{T}, e_{11}R] \approx e_{j1}\Delta \approx \Delta$. Hence, $g = \delta(e_{1i} | \mathfrak{r})$ for some δ in Δ , namely $g(x) = \delta e_{1i}x$ for any x in \mathfrak{r} . Therefore, we have an extension $f_0': M' \rightarrow e_{11}R$ by $f_0'(n_0+mx) = f_0(n_0) + \delta e_{1i}x$. $N_0 = M$. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect and $J(R) = \sum_{i \in S(A)} \bigoplus e_{ij} \Delta$. Since J(R) is projective, R is hereditary by [9], Lemma 3. Therefore, R is QF-3⁺ by Theorem 4. If R is QF-3, $e_{11}R$ is a minimal faithful module by Theorem 3. Hence, I has the last element by Theorem 3. Conversely, I has the last element, then $e_{11}R$ contains the unique submodule $e_{17}R$. It is clear that $e_{11}R$ is faithful module. Let M be a faithful module in \mathfrak{M}_R^+ . Then there exists m in M such that $me_{1} \neq 0$. Hence, we have a monomorphism f of $e_{11}R$ to M by $f(e_{11}r)=me_{11}r$. Therefore, R is QF-3.

Lemma 8. Let Δ be a division ring and $\{e_{ij}\}_I$ a set of matrix units. Put $S = \sum_{i \geq i} \oplus \Delta e_{ij}$ and $R = \sum_{i \geq i} \oplus \Delta e_{ij}$. Then

- 1) R is semi-hereditary.
- 2) R is semi-hereditary and QF-3 (or QF- 3^+) if and only if I has the last element.
 - 3) R is hereditary and $OF-3^+$ (or OF-3) if and only if I is finite, (cf. [12]).

Proof. 1) Let r be a right ideal generated by $\{x_1, x_2, \dots, x_n\}$. Since $x_i = \sum_{\alpha} x_i e_{\alpha}$ and $x_i e_{\alpha} \in r$, we may assume that $x_i \in Re_{\alpha_i}$, where $e_{\alpha_i} = e_{\alpha_i \alpha_i}$. Let $\alpha_i = \max(\alpha_i)$. Considering Re_{α_i} as a Δ -vector space, we may assume x_1, \dots, x_t are linearly independent over Δ . If $\sum_{i=1}^t x_i r_i = 0$ for $r_i \in R$ and $x_1 r_1 \neq 0$, then $r_1 e_{\epsilon} \neq 0$ for $\epsilon \leqslant \alpha_1$. Considering in S, we have $\sum_i x_i e_{\alpha_i} r_1 e_{\epsilon \alpha_1} = 0$ and $e_{\alpha_i} r_1 e_{\alpha_i} \neq 0$. Therefore, $\sum x_i R = \sum \bigoplus x_i R$. Put $\alpha_2 = \max(\{\alpha_i\} - \alpha_1\}$. We consider a vector space V_2 generated by $\{\sum_{i=1}^t x_i R e_{\alpha_2}, x_j e_{\alpha_2}\}$. We may assume $V_2 = \sum \bigoplus x_i R e_{\alpha_2}$ $\bigoplus y_1 \Delta \bigoplus \cdots \bigoplus y_s \Delta$, where $y_j = x_k e_{\alpha_2}$ for some k. We shall show that $\sum \bigoplus x_i R + \sum y_j R = \sum \bigoplus x_i R \bigoplus \sum \bigoplus y_j R$. We have already shown that $\sum y_i R = \sum \bigoplus y_i R$. Let $\sum x_i r_i = \sum y_j r_j r_j r_i r_i$, $r_i r_i \in R$. If $r_1 \neq 0$, $r_1 e_{\epsilon' \neq 2} \equiv \sum y_i e_{\alpha_2} r_i e_{\epsilon' \alpha_2}$ and multiplying $e_{\epsilon' \alpha_2}$ in the above, we have $\sum x_i e_{\alpha_1} r_i e_{\epsilon' \alpha_2} = \sum y_i e_{\alpha_2} r_i e_{\epsilon' \alpha_2}$ and

- $e_{\alpha_1}r_ie_{\epsilon'\alpha_2} \in Re_{\alpha_2}$, $\delta_1 = e_{\alpha_2}r_1'e_{\epsilon'\alpha_2} \pm 0$. Hence, $\sum y_i\delta_i = \sum x_ie_{\alpha_2}r_ie_{\epsilon'\alpha_2} \in \sum x_iRe_{\alpha_2}$, which is a contradication. On the other hand, $x_iR \approx e_{\alpha_1}R$, $y_jR \approx e_{\alpha_2}R$. Repeating this argument, we show that r is projective.
- 2) We assume that I has the last element α . We shall show that $e_{\alpha\alpha}R$ is injective as an analogy of Lemma 7. Let \mathfrak{r} be a right ideal in some $e_{\beta\beta}R$. Put $R(\mathfrak{r}) = \{\gamma \mid \in I, \mathfrak{r}e_{\gamma\gamma} \neq 0\}$. If $R(\mathfrak{r})$ contains the last element δ in $R(\mathfrak{r})$, then $\mathfrak{r}_{\delta} = \sum_{\delta' \leq \delta} e_{\beta\delta}Re_{\delta'\delta'} \approx e_{\delta\delta}R$. Let ε be the least element in $I R(\mathfrak{r})$. If ε is not a limit element, $R(\mathfrak{r})$ contains the element. We assume ε is limit. Then $\mathfrak{r} = \bigcup_{\mathfrak{r}' \in I} \mathfrak{r}_{\mathfrak{r}'}$. We shall show $[\mathfrak{r}, e_{\alpha\alpha}R] \approx \Delta e_{\alpha\alpha}$. Let $f \in [\mathfrak{r}, e_{\alpha\beta}R]$ and put $f_{\varepsilon'} = f \mid \mathfrak{r}_{\varepsilon'} \in [\mathfrak{r}_{\varepsilon'}, e_{\alpha\alpha}R]$ $\approx [e_{\varepsilon'\varepsilon'}R, e_{\alpha\alpha}R]$. Then $f_{\varepsilon'} = \delta_{\varepsilon'}e_{\alpha\alpha}$ for some $\delta_{\varepsilon'} \in \Delta$. For $\varepsilon' \in \varepsilon''$ we have $\delta_{\varepsilon'}e_{\alpha\varepsilon'} = f_{\varepsilon'}(e_{\alpha\varepsilon'}) = f(e_{\alpha\varepsilon'}) = f_{\varepsilon''}(e_{\beta\varepsilon'}) = \delta_{\varepsilon''}e_{\alpha\varepsilon'}$. Hence, $\delta_{\varepsilon'} = \delta_{\varepsilon''}$. If we put $\delta = \delta_{\varepsilon'}$, $f = \delta e_{\alpha\beta}$. Thus, we have prepared necessary facts to use the proof of Lemma 7. Therefore, $e_{\alpha\alpha}R$ is injective in \mathfrak{M}_R^* and R is $QF-3^+$ and QF-3 by Theorem 4'. The converse is clear from 1) and Theorems 3 and 4'.
- 3) If I is finite, R is a hereditary and QF-3 artinian ring by [4], Theorem 3. We assume that R is hereditary and QF-3 or QF-3 $^+$. Then I has the last element by Theorem 4. We assume that I contains a limit number α . Consider $J(e_{\alpha}R) = \sum_{\alpha < \gamma} \oplus e_{\alpha\gamma} \Delta$. Let $x = \sum_{i=1}^{n} e_{\alpha\gamma_i} \delta_i$. Then $x = \sum e_{\alpha\gamma_{i+1}} \delta_i e_{\gamma_{i+1}\gamma_i} \in J(e_{\alpha}R) J(R) \subseteq J^2(e_{\alpha}R)$. Hence, $J(e_{\alpha}R) = J^2(e_{\alpha}R)$, which implies $J(e_{\alpha}R)$ is not projective by [8], Proposition 2. Therefore, I does not contain the limit number, but contain the last element, Hence, I is finite.

From the above proof and [9] Lemma 3 we have

Corollary. Let R be as above. Then R is hereditary if and only if $|I| \leq \aleph_0$ and does not contain the last element.

Theorem 5. Let \mathfrak{A} be a perfect or semi-perfect and semi-artiniam, and locally PP-Grothendieck category with generating set of small projectives. If \mathfrak{A} is QF-3+ or QF-3, then \mathfrak{A} is equivalent to $\Pi\mathfrak{A}_{\alpha}$, where \mathfrak{A}_{α} 's are of the same type as \mathfrak{A} and \mathfrak{A}_{α} is not expressed as a product of full subcategories.

Proof. Let R be the induced ring from $\mathfrak A$ and $\sum e_i R$ the coproduct of projectives in the first block. We shall show $e_{\mathfrak e}Re_{\mathfrak e'}=0$ for either $\mathfrak E \in R(i)$, $\mathfrak E' \oplus R(i)$ or $\mathfrak E \oplus R(i)$, $\mathfrak E' \oplus R(i)$. If $\mathfrak E \oplus R(i)$ $e_{\mathfrak e}R$ is monomorphic to a submodule of $e_i R$. Hence, $e_{\mathfrak e}Re_{\mathfrak e'}=0$ if $\mathfrak E' \oplus R(i)$. Next, we assume $\mathfrak E' \oplus R(i)$. If $e_{\mathfrak e}Re_{\mathfrak e'}\neq 0$ for $\mathfrak E \oplus R(i)$, $0 \neq e_{\mathfrak e}Re_{\mathfrak e'}e_{\mathfrak e}Re_{\mathfrak q'}=e_{\mathfrak e}Re_{\mathfrak q'}$ for some $\gamma_i \oplus R(i)$ (or the last (resp. first) element in R(i)) by Lemma 1, which contradicts to a fact $R^{\gamma_i}(i) \supset C(\gamma_i)$. Put $R_i = \sum_{\mathfrak e,\mathfrak e' \in R(i)^{\mathfrak e}}e_{\mathfrak e}Re_{\mathfrak e'}$. Then $R = \sum \oplus R_i$ as a ring by Theorems 3, 4 and 4'. It is clear that each R_i is $QF-3^+$ or QF-3 and directly indecomposable. Hence, we have the theorem.

366 M. Harada

From the above theorem, we may restrict ourselves to a case of indecomposable categories if $\mathfrak A$ is as in the theorem.

Theorem 6. Let $\mathfrak A$ be an indecomposable semi-perfect Grothendieck category with generating set of finitely generated objects. Then we have

- 1) \mathfrak{A} is perfect, (semi-) hereditary and QF-3⁺ (resp. QF-3) if and only if \mathfrak{A} is equivalent to $[I, \mathfrak{M}_{\Delta}]^r$, where I is a well ordered set (resp. with last element).
- 2) $\mathfrak A$ is semi-artinan, hereditary and QF-3⁺ (or QF-3) if and only if $\mathfrak A$ is equivalent to $[I, \mathfrak M_{\Delta}]^I$, where I is a finite set
- 3) $\mathfrak A$ is semi-artinian, semi-hereditary and QF-3⁺ (or QF-3) if and only if $\mathfrak A$ is equivalent to $[I, M_{\Delta}]^I$, where I is a well ordered set with last element. Where Δ is a division ring and functors T_i , in $[I, \mathfrak M_{\Delta}]$ are equal to $1\mathfrak M_{\Delta}$, (cf. [2'], Theorem 3.2).

 $[I, \mathfrak{M}_{\Delta}]^r$ is perfect, hereditary and $QF-3^+$ by Lemma 7 and [9], Theorem 3. We assume that I contains the last element. $[I, \mathfrak{M}_{\Delta}]^r$ is QF-3 by Lemma 7. If I is finite, $[I, \mathfrak{M}_{\Delta}]^I$ is semi-primary, hereditary and $QF-3^+$ (and QF-3) by Lemma 8. Finally, $[I, \mathfrak{M}_{\Delta}]^{I}$ is semi-artinian, semi-hereditary and $QF-3^+$ (QF-3) by Lemma 8 and [9], Proposition 1. Next, we assume that $\mathfrak A$ is one of the forms in the theorem. Let R be the induced ring: $R = \sum e_i R$. Then e_1R in the case 1) and $e_{\omega}R$ in cases 2) and 3) are in the first block by Theorems 4 and 4', respectively, where α is the last element in I. Since, \mathfrak{A} is indecomposable, e_1Re_{γ} (resp. $e_{\alpha}Re_{\gamma}$) $\neq 0$ for any $\gamma \in I$ by Theorem 5, Lemma 3 and Remark. Let \mathfrak{A} be herediary (cases 1) and 2)). If $[e_1Re_2:\Delta_2] \geqslant$ 2 (resp. $[e_{\alpha}Re_{\gamma}: \Delta_{\gamma}] \ge 2$) for any $\gamma \in I$, there exist linearly independent elements $x, y \text{ over } \Delta_{\gamma} = e_{\gamma} R e_{\gamma}$. Then $xR + yR = xR \oplus yR$ by [9], Theorem 3, which contradicts to the indecomposability of e_1R and e_aR . Let a, b be non-zero elements in e_1Re_2 . As the proof of Lemma 6, a mapping $\psi:aR\to bR$ such that $\psi(a)=b$ gives a R-homomorphism. Furthermore, ψ is extended in $[e_1R, e_1R] = \Delta$, Hence $b = \delta a$ for some $\delta \in \Delta_1$. Therefore, $[e_1 R e_2 : \Delta_1] = 1$. Similarly, we obtain $[e_{\alpha}Re_{\gamma}:\Delta_{\alpha}]=1$. Next, we assume \mathfrak{A} is semi-hereditary and $QF-3^+$ (case 3)). Then $e_{\alpha}R$ is in the first block and injective. Let x, y be non-zero elements in $e_{\alpha}Re_{\gamma}$. Then xR+yR is a projective right ideal in $e_{\alpha}R$. Since $e_{\alpha}R$ contains the unique minimal module and R is semi-perfect, $xR+yR \approx e_{\delta}R$ for some $\delta \in I$. Put $\psi^{-1}(e_{\delta})=z$, then $z \in e_{\sigma}Re_{\delta}$ and x=zr, y=zr' for r, $r' \in R$. Hence, $r=\delta$ and $x=ze_{\delta}re_{\delta}$, $y=ze_{\delta}r'e_{\delta}$. Therefore $[e_{\omega}Re_{\gamma}:\Delta_{\gamma}]=1$. Similarly to the above, we can show $[e_{\alpha}Re_{\gamma}: \Delta_{\gamma}]=1$. Thus, in any cases $e_{1}Re_{\varepsilon}$ (resp. $e_{\alpha}Re_{\varepsilon}$) is a simple Δ_{e} -module. Hence, if $e_{e}Re_{\gamma} \neq 0$, $e_{1}Re_{e} \otimes e_{e}Re_{\gamma} \subset e_{1}Re_{\gamma}$ implies $[e_{e}Re_{\gamma} : \Delta_{e}] =$ $[e_{\varepsilon}Re_{\gamma}: \Delta_{\gamma}]=1$ from Theorem 1. Let $x \neq 0 \in e_{i}Re_{j}$. Then Δ_{i} is isomorphic to Δ_i by ξ : $\delta_i x = x \xi(\delta_i)$. First we choose non-zero elements m_{ij} in $e_1 R e_j$. Then $e_j R$ is monomorphic to $\sum_{k \geq i} m_{ik} \Delta$ by the multiplication of m_{ij} from the left side. Hence, we can choose m_{jk} in $e_j Re_k$ such that $m_{1j} m_{jk} = m_{1k}$ (if $e_j Re_k \neq 0$). Then

 $m_{1i}(m_{ij}m_{jk}) = m_{1j}m_{jk} = m_{1k} = m_{1i}m_{ik}$. Therefore, $m_{ij}m_{jk} = m_{ik}$ if $m_{ij} \neq 0$ and $m_{jk} \neq 0$. Thus, R is a subring of $\sum_{i \leq j} \oplus e_{ij} \Delta$ (resp. $\sum_{i \geq j} \oplus e_{ij} \Delta$) such that all of elements of some (i, j)-entries may be equal to zero, where $\Delta \approx \Delta_i$. We assume $e_i Re_j = 0$ (in cases 1) and 2)). Then $i \neq 1$ (resp. $i \neq \alpha$) and there exists γ from Lemma 6 such that $e_i Re_\gamma \neq 0$, $e_j Re_\gamma \neq 0$. Put $e = e_{11} + e_{ii} + e_{jj} + e_{\gamma\gamma}$ (resp. $e = e_{11} + e_{ii} + e_{jj} + e_{\alpha\alpha}$). Then $eRe = e_{11}\Delta \oplus e_{1i}\Delta \oplus e_{1j}\Delta \oplus e_{i\gamma}\Delta \oplus e_{i\gamma}\Delta \oplus e_{i\gamma}\Delta \oplus e_{j\gamma}\Delta \oplus e_{j\gamma}\Delta$ is hereditary by [9], Corolalry to Lemma 2 if R is hereditary. However, we can easily see that eRe is not hereditary (cf. [6], Theorem 1). Therefore, $R = \sum_{i \leq j} \oplus e_{ij}\Delta$, (resp. $R = \sum_{i \geq j} \oplus e_{ij}\Delta$). Finally, we assume that R is semi-hereditary (case 3)). Let $\gamma < \delta$ be in R. Then since $R_{\alpha\gamma}R + R_{\alpha\delta}R$ is projective, $R_{\alpha\gamma}R + R_{\alpha\delta}R = zR$ as before, where $z \in e_\alpha Re_\delta$. Hence, $zR = m_{\alpha\delta}R \supset m_{\alpha\gamma}R$. Therefore, $0 \neq m_{\alpha\gamma} = m_{\alpha\delta}e_\delta e_\delta e_{r\gamma}$ implies $e_\delta Re_\gamma \neq 0$. Thus, $\mathfrak A$ is equivalent to $[I, \mathfrak M_\Delta]'$. The remaining parts are clear from Theorems 3, 4 and 4' and Lemma 8.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960) 466-488.
- [2] R.R.Colby and E.A.Rutter: Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968) 253-257.
- [2'] ——: Generalization of QF-3 algebras, Trans. Amer. Math. Soc. 153 (1971), 371-386.
- [3] M. Harada: On semi-primary PP-rings, Osaka J. Math. 2 (1965), 154-161.
- [4] —: QF-3 and semi-primary PP-rings, I ibid. 2 (1965), 357-368.
- [5] ——: QF-3 and semi-primary PP-rings II, ibid. 3 (1966), 21-27.
- [6] —: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966) 463-484.
- [7] ——: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
- [8] —: Perfect categories I, Osaka J. Math. 10 (1973), 329-341.
- [9] ----: Perfect categories II, Osaka J. Math. 10 (1973), 343-355.
- [10] J.P.Jans: Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108.
- [11] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
- [12] H.Tachikawa: On left QF-3 rings, ibid. 32 (1970) 255-268.
- [13] M.R.Thrall: Some generalizations of quasi-Frobenius algebra, Trans. Amer. Math. Soc. 64 (1948) 173-183.
- [14] R.B.Warfield: Decomposition of injective modules, Pacific. J. Math. 31 (1969), 263 -276.