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The purpose of this paper is to discuss an application of the theory of vector
bundle valued harmonic forms on a Riemannian manifold to the study of immer-
sions.

Let M be a Riemannian manifold and E a Riemannian vector bundle over M.
Then we can define in a natural way the Laplacian Π operating on ^-valued dif-
ferential forms and we can express the scalar product <•#, 0>, where θ is an
£"-valued />-form, in terms of curvature and covariant differentials. Moreover,
if M is compact, we obtain, by integrating over M, a formula analogous to Boch-
ner's for ordinary (i.e. real valued) differential forms.

Let/be an immersion of M into a Riemannian manifold M'. We may regard
the second fundamental form a of (M,f) as a Horn (Γ(M), 7V(M))-valued 1-form.
Assuming that M' is of constant sectional curvature, we shall prove that the second
fundamental form a is harmonic, i.e. \^Ja = 0, if the mean curvature normal of
(M, f) is parallel. In particular, if the immersion/is a minimal immersion, then
a is harmonic. Conversely, if M is compact and if a is harmonic, then the mean
curvature normal is parallel. We obtain from this result together with the formula
of Bochner type the results of Simons [5], Chern [1], Nomizu-Smyth [4] and
Erbacher [2] proved by them in different ways. In a future paper we shall dis-
cuss the case where M is a Kahler manifold.

1. Let M be an ^-dimensional Riemannian manifold and E a vector bundle
over M with a metric along the fibers and a covariant differentiation Dx satisfy-
ing

y = <px>

for any vector field X and any sections φ and ψ o f £. A vector bundle E with
these properties will be called a Riemannian vector bundle.

We shall denote Cp (E) the real vector space of all Z?-valued differential p-
forms on M. We define an operator

3 : C{E)->C^\E),{p = 0,1,-)
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by the formula

(dθ)(Xlt-,XP+1) = %(-l)i+1D
1

where X/s denote vector fields on M. The covariant derivative Dxθ oϊθ^Cp(E)
is an /^-valued />-form such that

(DXΘ)(X1}-,XP) = Dx(θ(X1r"}XP))-±θ(Xly'-yxXir-)Xp)i

where V X J denotes the covariant derivative of the vector field X{ in the Rieman-
nian manifold M.

For an J?-valued 1-form θ we have the formula

(dθ)(X, Y) = (DXΘ)(Y)-(DYΘ)(X)

The covariant differential Dθ of θ is an jB-valued (^+l)-tensor defined by

(DΘ)(Xu-,Xfi, X) = (DXΘ)(XU -,XP).

We define an operator

d* : Cp(E)-*C*-\E) (p>0)

as follows. Let x e M and let {elf- ,en} be an orthonormal basis of the tangent
space TX(M) of M at x. For any p— 1 tangent vectors uly" ,up_λ at Λ?, put

where {Derj)x denotes the value of Dxη at x for any vector field X such that X Λ =
ek. Then (θ*^)^ is an alternating (p— l)-linear map of TX{M) into £*, the fiber
of E over #, and the assignment x —> (d*η)x defines an i?-valued (p—l)-form 8*^.
For any ̂ -valued 0-form Θ, we define 3*0 = 0.

The Laplacίan Q for E'-valued differential forms is defined as

• = 99*+9*9.

The curvature R of the covariant differentiation D in E is a Horn (E, E)-
valued 2-forms given by

R(X, Y)φ = Dx(DYφ)-DY(Dxφ)-DlXiYjφ

for any section φ of E and for any vector fields X and Y in M. We shall denote by
ζθriy the scalar product of two £"-valued ^>-forms, that is, ζθ, rjy is the smooth
function on M given by



VECTOR BUNDLE VALUED HARMONIC FORMS

<θ, V>(x) = ± <θ(eiχr»,eip), η{eiir

where {ely -,en} denotes an orthonormal basis of TX(M).
Now we prove the following

Theorem 1. Let θ be an E-valued I-form. Then

y = -1Δ«9, ff>+<DΘJ)ff>+A,

where Δ denotes the Laplacian of the Rίemannίan manifold M and A denotes a
smooth function in M defined as follows:

A(x) = Σ <(£(«,, ewe,), θ(ei)>+ Σ <θ[S(eι)), θ{e,)>,
i, j i

where {e1}'"}en} is an orthonormal basis of TX(M) and S denotes the endomorphίsm
of TX(M) defined by the Rίccί tensor S ofM, i.e. S(e{) = Σ Ski ek.

Proof. Fix a point Λ G M and let {ely" ,en} be an orthonormal basis of
TX(M). We can choose n vector fields Eir~yEn'mM such that E^x) = e£ and (VEk

E£)x = 0 for i, k = l,*",n. Then, because ^eE{ are zero for z, s = 1, , n, we
have

{d*dθ){e,) = - Σ (DJΘ)(es> e{) = - Σ Des{{dθ){Es, E{))

= Σ {DEsDEiθ){ei)- Σ (DEsDEsθ)(ei)

On the other hand, 9*0 = - Σ £ s ' φ E t 0 ) ( £ s ) where (g") is the inverse matrix of
s, t

the matrix (g(Esy Et)), we have

{dd*θ){et) = De.(d*θ) = - Σ ( e ^ ' ) ( ^ ) ( « . ) - Σ Bs%((DEιθ)(Es))

= - Σ eMPκβ){P,)) = - Σ (DEpEβ%*.),

because Vβ<. ί1^ = 0 at #.
Therefore we obtain

(D<9)W = Σ ((DBsDEί-DE.DEs)θ)(es) - Σ (DEpEM*i)-

Since [£"5, £,] = 0 at x, we have

{{DEsDE-DEiDEs)θ){es) =

=

Therefore
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, θy = Σ <(ΠΘ)θ(eί), («,)>

Ίl

Σ θ(S(et), θ(e,)
i

BβEβ){et),θ{et)y.

Now by a local computation we see that

- Σ < Φ Λ s 0 ) ( e , )>%, )>

= <DΘ, Dθy{χ)+-^{Δ<β, e»{χ).

Thus we have proved that

Corollary 1. Let θ be an Έ-valued l-form. Assume that \~\θ = 0 and
Δζθ, 0̂ >=O. Then we have A^O everywhere on M.

Assume now that M is compact and oriented. Then we can define the inner
product (θ, η) of two JS-valued ^>-forms by

Then we obtain from Theorem 1 the following corollary.

Corollary 2. Let θ be an Έ-valued l-form such that • # = 0. Then we have

(DΘ,DΘ)+\
J Λf

A*l = 0.
f

// A ^ 0 everywhere on M, then we have A = 0 and Dθ = 0.

We remark that the operator 3* is the adjoint operator of 3, i.e.

(90, v) = φy d*η)

for any θ e CP(E) and η e CpΛ\E) and hence we have

Therefore, if M is compact, •<? = 0 if and only if dθ = 0 and 3*0 = 0.

2. Let M be an w-dimensional Riemannian manifold isometrically immersed
in a Riemannian manifold M' of dimension n -\- p. We shall denote by N(M)
and α the normal bundle and the second fundamental form of M [3]. The
second fundamental form a is an iV(M)-valued symmetric 2-form on M.

In the following we put
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E = Horn (T(M)f N(M)) = Γ* (Af) (g) N(M)

and we interprete α as an ^-valued 1-form /? as follows: For any vector field X
in My β(X) is a section of Z? such that

β{X)Ύ=a(X,Y)

for all vector field Y in M. Then we have

β(X) Y=β(Y) X.

We call also β the second fundamental form of M.

A metric along the fibres of E is defined naturally by the Riemann metrics of
M and M/ and a covariant derivation Dx in Z? is also naturally defined by the cova-
riant differentiation Vx in M and Dx in N(M), where for any normal vector ξ of
M, Dxξ is defined as the normal component of ̂  xξ, where V^r denote the cova-
riant differentiation in the Riemannian manifold Mf (See [3]).

Let ψ be a section of £\ We may regard φ as an iV(M)-valued 1-form on M
and we have

(Dxφ)(Y) = D

<.Dxφ, ψy+<φ, Dxψy = x<<p,

for any sections φ and -v/r of E.

The following Proposition 1 may be considered as an interpretation of the
equation of Codazzi in our formalism.

Proposition 1. Assume that M/ is a Riemannian manifold of constant sec-
tional curvature. Then the second fundamental form β of M satisfies the equation
9/3 = 0.

Proof. By a straightforward computation we see that

(dβ(X, Y))(Z) = {Dx(a(Y, Z))-a(VxY, Z)-a{Y, VXZ)}

- {D#a(X, Z))-a{ γXy Z)-a(X, VYZ)}

and the right hand side is 0 by [3, Vol. II, P. 25, Cor. 4.4].
For each normal vector v EΞ NX(M) we define an endomorphism A^ of

TX(M) by the formula

for any tangent vectors u, v<= TX(M). The mean curvature normal η of M is a
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normal vector field in M such that

-!-TrΛ = <*,*(*)>
n

for any v e NX{M) and a? e M.
M is said to be minimal in M' if the mean curvature normal vanishes at each

point, that is, if Tr A^ = 0 for any v ^ Nx (M) and x e M.
We say that M has a constant mean curvature if the mean curvature normal

97 is parallel, that is, Dj^v = 0 for any vector field X in M.
Let z> be a normal vector field. Then we have Tr Av = n ζy, yf) and hence

X Ύv A^=n{ζD^v, vy+Ky, Djprjy}. Therefore M has a constant mean curva-
ture, if and only if

for any normal vector field v and any vector field X in M.

Proposition 2. Let M' be a Riemmanίan manifold of constant sectional cur-
vature. Then the second fundamental form β ofM satisfies the equation 3*/3 = 0 if
and only if M has a constant mean curvature.

Proof. Let x be a point in M and let {̂ i,•••,£„} be an orthonormal basis of
TX(M). Let E1,"}En be vector fields in a neighborhood of x such that (Ei)x = e{

and VE.Eh = 0 at x for i, k = l, ,w. Let(^5ί) the inverse matrix of the matrix
(<E,,Et». Then 9*/3 = -gs\DEtβ)(Es)^ and(9*/3).£, = -gs\ΌEβ){EsyEk.
Since(DEtβ)(Es)Ek = D^(a(Es, Ek))-a(VEtEsy Ek)-a(Esy VEfEk) and since a
is symmetric, we get(DEtβ)(Es) Ek = (DEtβ)(Ek)Es. On the other hand, by
Proposition 1, we have dβ = 0 and hence (DEtβ)(Ek) = (DEkβ)(Et), hence
(DEtβ)(Es)Ek = (DEkβ)(Et)-Es. Therefore, for any normal vector field v, we
have

<(d*β).Ek, v> = -g°K{DEkβ){Et)Es, v>

= -gst{<DhMEt> E.)), v>-<a(VBkEt, Es), vy

-<a(Et, WEkEs), v».

Now

= g"{Ek<a(Et, Es), v>-<fit(Et, Es),

= Ek{g>Ka{Et> Es), vy)-{Ekg*')(a{Et, Es), vy-gs\a{Et, E.),

= Ek{TrA,)-TrAD±χ-Ekg
st.<^a{Et, Es), „>.

1) We omit here the summation signs.
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Since VEkE{ = 0 at x, we have Ekg
st = 0 at x. Therefore we get from the above

that

<(d*β)Eh,vχx) = ΎτADL,-Ek(ΎrAv)

at x for Λ = 1, 2, , w and hence for any vector field X we have <(3*/3)X, Vs) (x)

= Trτ4DJ-v—X(Tr^4v)at x. Since # is an arbitrary point of M and ^ is an arbitrary

normal vector field, we see from the above equation that 3*/3 = 0 if and only if

M has a constant mean curvature.

From Propositions 1 and 2 we get the following

Theorem 2. Let M be a Riemannian manifold immersed isometrίcally into a

Riemannian manifold Mf of constant sectional curvature. Let β be the second funda-

mental form of M regarded as a Horn (T(M), N(M))-valued 1-form. Then β satis-

fies the equation •/? = 0, if M has a constant mean curvature. Conversely, if M is

compact and orientable and [Jβ = 0, then M has a constant mean curvature.

3. We shall discuss in this section some applications of Theorems 1 and

2. Let M be a Riemannian manifold immersed isometrically into a Riemannian

manifold M' of constant sectional curvature c. Let x e M and let {tfu , en} and

{vi>"m>vp} be orthonormal bases of TX(M) and NX(M) respectively. We shall

denote by Aa(a = 1, 2,--,p) the endomorphism of TX{M) defined bγ(Aau ,vy =

(β(u)'V, pay and put Aa-ei = 2 {Aa){ej. Then we have the following Gauss

equation :

(3.1) Rklij = c{8 A Ay-M«}+2 {(Aa)\{Aa)\-{Aa))(Aa)%,
a

where RMij denote the components of the curvature tensor with respect to the

basis {e19 ,en} of TX(M). Then the endomorphism S of TX(M) defined by S(βj)

= Σ 5/y(̂ /) with Sej = Σ ΛΛ/Λy is of the form

(3.2) S - C( n-1)/+Σ (Tr Λ ) Λ - Σ ̂ L

where / denotes the identity endomorphism of TX(M).

Let K be the scalar curvature of M. Then UΓ(Λ ) = Tr S = c(n-l)n+

2 (Tr ̂ 4Λ)2—Σ Tr ̂ 4«. The value η{x) at Λ; of the mean curvature normal η is
a a

given by η(x)=—Σ Tr Aa va and hence W2<(T7, ^>(^)=Σ(Tr^4 α ) 2 . Analogously
n a a

we have </9, /?>(*) = Σ Tr A2

a. Hence we get

(3.3) K = c(n- l)n+n\V, V>-
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where β and η denotes the second fundamental form and the mean curvature nor-
mal of M respectively. For any Riemannian vector bundle E over M we have de-
fined the endomorphism R(u, v) of the fiber Ex, where u, v e TX(M). Let E =
Hom(Γ(M), N(M) and let φ e Ex. Then R(u, v) φ is an element of Ex = Horn
(TX(M), NX(M)) such that

(3.4) (R(u, v)φ)(w) = R\u, v)(w)φ)-φ(R(uf v)w),

where u, v, w e TX(M) and RL denotes the curvature of the Riemannian vector
bundle N(M).

Let ybea normal vector of M at x and let iV be a normal vector field such
that Nx = v. Let X and Y be vector fields in M such that Xx = w and Y* = ϋ .
Then we have

at x.
Denote by Vr the covariant derivation in the ambiant space M''. Then we

have

We see from these two equations that the normal component (R\X, Y)N)1-oί R'
(X, Y)N, where R denotes the curvature tensor of M, , is equal to R\X, Y) N
-a{AN(Y), X)+a(AN(X),Y). Since Mf is of constant curvarute R{X} Y) N
=c{<N, Y> X-<N, XyY) = 0 and hence we get R\Xy Y)N= -a(AN(X),Y)
+ a(AN( Y), X). Thus we have

u, v)v = - a(Avu, v)+a(Avv, u).

In particular

R\u, v)va = - a(Aau} v)+a(u, Aav).

Since a(Aau, v) = Σ <a(Aau, v\ v^vb = Σ (AbAauy v) vb
b b

and a(u, Aav) = Σ ζAbuy Aavyvb = Σ <-4^
6 6

we get
(3.5)

Now by

1

Theorem 1, we

<D/3,

« > ,

have

β> =

ΣK[AMAb]u, .
b

,<β, β>+φβ,
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where

(3.6)

Now

A(X) = :

Σ <β(S(ef

ϊ <%,, e,)β{e

), β(e()y = Σ

•j), /3(e, ) > + Σ <β{S{e,), β(e,)>.
i

<α(S(^), eX a(eiy eX>

= Σ < ^ % ) ) l y /

and by (3.2) we get

(3.7) Σ </?(%,),/3(e, )>

= c ( » - l ) Σ Tr ^ 2 + Σ Tr Aa Ύr(AaAt)-^ Ύr(A2

aAt).
a atb atb

On the other hand,

».. y

= . Σ <R±(ej> *i)Φj, ek\ a(eo ek)>—Σ<a(*j, R(ej> ^)ek)y a(eiy ek)>

i.j.t a,b

— Σ Σ <^«^y^ Λ (^y . ^k><Aa^i> ek>
ί,y,* a

and by (3.5), the first term equals Σ Tr(AaAb[Aa, Ab]) = - Σ Tr(^Ml) + Σ
a,b a,b a,b

Tr(AaAb)
2 and by the Gauss equation (3.1) the second term equals —

Therefore we have

(3.8)

= c Σ Tr Al-c Σ(Tr ^ β ) 2 - Σ Tr(^Mα

2)-Σ (Ύr(AaAb)y+
a v a,b a,b

Then we get from (3.6), (3.7) and (3.8) that

(3.9) A(x) = en Σ Tr A\-c Σ (Tr ^ α ) 2 Σ
β « a,b

+ Σ Tr ^Λ .Tr(^!^ δ

2)+Σ Tr[^β, Abf.
ab bΣ
a,b

Now let λiαV ,λ£° be eigen-values of ^4Λ and let {e[a\-~,e^{ be an orthonormal
basis of TX(M) such that Aae^ = \^e?\t=:lr"9n9 a = 1, —,/>).

We shall denote by Kίf the sectional curvature for the 2-plane spanned by
e^ and ef\ i φ >.

We show that
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(3.10) A(x) = Σ Σ W ' - λ J W J ' + ^ Σ Ύτ[Aa, Abγ.
υ i<j 2 *

We write A(x) in the following form:

(3.11) A(x) = £(x)+Σ Tr Aa-Tr(AaA
2

b)-Y±(Tr(AaAb)Y+
ab ab

a,b

where

(3.12) B(x) = Σ {en Tr A2

a-c(Ύv Aa)
2-(Tr A*)2+Ύr Aa-ΎrA*}.

a

Now by a lemma of Nomizu-Smyth [4] we have

(3.13) en Tr A2

a-c(Tr ^ a ) 2 -(Tr Alf+Ύr Aa.Ύr(Aa)
3

for each a. Now fix an index a and let

Λβ?° = Σ (A)φβ 3 (6=1,2,--.,/,)
y

Then we have (Aa)] =h'JXf^ and hence

(3.14) (AaAbγ} = λ<Λ(Λ)5, (^^<,)J = (^,)5λ

By the equation of Gauss we have

Kfί = R(e?\ ej«, ef\ ef>)

}-Έ {Ab)]{Ab){.
b

Hence we have

This equality holds also for / = j trivially if we define Kfj = 0.

Then by (3.14)

Σ (λr-λn^+λ^λ^) = 4- Σ (λ^-λn^
t < ; 2 ί.i

= Σ (x^-xr^s'-l Σ Σ (\r-\r)(Abyw
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\ Σ {Σ W>) W ! Σ (Λ)ί - 2 Σ M W ί Σ λΠΛ)}

-xrW-v= Σ W3-x
ί<y

2

- Σ {Tr Ab-Tr(AlAb)-(Tr(AaAb)γ}.

Then we obtain from (3.11), (3.12) and (3.13) the equality (3.10).
Now we cite the following two lemmas from [1].

Lemma 1. Let A and B be symmetric n X n matrices. Then

Ύr[A, B]2 ^ - 2 T r A2 Ύr B\

and the equality holds for non-zero matrices A and B if and only if A and B can be
transformed simultaneously by an orthogonal matrix into scalar multiple of A and B
respectively, where

(3.15) /I 0

0

0

0

Lemma 2. Let Au A2 and A3 be n x n symmetric matrices and if

Ύr[AayAbγ= -lΎrAl ΎrAl

for 1 5̂  a < b ^ 3, then at least one of the matrices Aa must be zero.

By Lemma 1, we have

4 Σ Tr[4,, AY ^ - Σ Tr Al Ύr A\ = -2 Σ Tr
2, ",b aτ^b a<b

Put Sa = Tr At Then Σ S , = </3, /3>(x).
a

Since

o ^ Σ (<sa-s6)
2 = Σ (S2

a+sξ)-

2-2 Σ
β<6

A\.

we have
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-2 Σ sasb ^ -
a<b

ane here the equality holds if and only if Sa = Sb for a,b=ly-- ,p. Therefore
we get

(3.16) -1 Σ Ύr[Aa, Abf ^ - <£=D<β, βy (x)
I a,b p

and the equality holds if and only if Tr A\ = Tr Aξ = Tr A\ for a,b = 1,—,/> and
either ^4Λ are all zero except possibly one of them or Aa are all zero except two
of them, say A1 and A2, and they can be transformed simultaneously by an ortho-
gonal matrix into scalar multiple of the matrices of the form (3.15). Thus we ob-
tain from (3.10) the inequality

(3.17) A(x) ̂  Σ Σ ( λ ^ - λ H 8 ^ - ^ ^ , β>2(x).
a i<i p

Assume now that the scalar curvatures of M are bounded below by a positive
constant d. Then

ΣΣ W
a i<j a i<j

and

Σ (λSβ)-λH2 = (n-l)Tr Al-2 Σ \^\T

-2 Σ λ^λ^ = Tr A2

a-(Ύτ Aaf

and hence

Σ Σ (λΓ-λΓ)2 = n<β, β>(x)-n\v, vXx),

where η denotes the mean curvature normal of M. Thus we get the following
inequality

(3.17) A

at each point of M.
We obtain from Corollaries 1 and 2 of Theorem 1 and Theorem 2 the follow-

ing

Theorem 3. Let M be an fi-dimensional, Rίemannian manifold with sectional

curvatures bounded below by a positive constant d. Assume that M is immersed in a

Riemannίan manifold Mf of constant sectional curvature of dimension n-\-p and that

M has a constant mean curvature. Then, if M is compact and orientable or if the

length of the second fundamental form β of M is constant, then we have
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(3.18) 0 ^ A

at each point of M, where η denotes the mean curvature normal ofM which is parallel

and ζrj, η) is a constant.

Now assume M is compact and oriented and let k = ζrj, η). Then integrating

both sides of the inequality (3.18) we obtain

dn2k[ *1 ^ ( {dn-P^A
JM JM( p

and we have the equality here if and only if

dn'k =

and this implies also that A = 0 and that β is parallel by Theorem 1. Then

<(/?, βy must satisfy the quadratic equation (p—\)x2—p dn x-\-pn2k=0 and since

the discriminant of this equation should be positive we should have the inequality
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