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The purpose of this paper is to discuss an application of the theory of vector
bundle valued harmonic forms on a Riemannian manifold to the study of immer-
sions.

Let M be a Riemannian manifold and E a Riemannian vector bundle over M.
Then we can define in a natural way the Laplacian [] operating on E—valued dif-
ferential forms and we can express the scalar product {[}6, §>, where € is an
E-valued p—form, in terms of curvature and covariant differentials. Moreover,
if M is compact, we obtain, by integrating over M, a formula analogous to Boch-
ner’s for ordinary (i.e. real valued) differential forms.

Let f be an immersion of M into a Riemannian manifold M’. We may regard
the second fundamental form « of (M, f) as a Hom (T'(M), N(M))-valued 1-form.
Assuming that M’ is of constant sectional curvature, we shall prove that the second
fundamental form « is harmonic, i.e. [ Ja =0, if the mean curvature normal of
(M, f) is parallel. In particular, if the immersion fis a minimal immersion, then
« is harmonic. Conversely, if M is compact and if « is harmonic, then the mean
curvature normal is parallel. We obtain from this result together with the formula
of Bochner type the results of Simons [5], Chern [1], Nomizu-Smyth [4] and
Erbacher [2] proved by them in different ways. In a future paper we shall dis-
cuss the case where M is a Kihler manifold.

1. Let M be an n-dimensional Riemannian manifold and E a vector bundle
over M with a metric along the fibers and a covariant differentiation Dy satisfy-
ing

X<¢: ‘l"> = <DX) (/’>‘|"<<P, DX‘\b‘>

for any vector field X and any sections @ and +» of E. A vector bundle E with
these properties will be called a Riemannian vector bundle.

We shall denote C? (E) the real vector space of all E-valued differential p—
forms on M. We define an operator

8 : CXE)—->C?**(E),(p = 0, 1,-++)
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by the formula
pt1 . N
(00) (X, X py) = Ex (— 1) "' Dy (0(X,, -, Ko, X p11))
S (O XX, Ko K X

where X,’s denote vector fields on M. The covariant derivative Dx6 of § = C?(E)
is an E—valued p—form such that

?
(DXo)(Xlx'“JXp) = DX(G(XI)“')XP))_Ela(Xv'“)VXXi)'“)Xp))

where VX, denotes the covariant derivative of the vector field X; in the Rieman-
nian manifold M.
For an E-valued 1-form € we have the formula

(00)(X, ¥) = (Dx0)(Y)— (Dy0)(X)
The covariant differential D@ of 6 is an E—valued (p+1)-tensor defined by
(DO)(X,, -+, X 5, X) = (DxO)(X,, -+, X ).
We define an operator
0% : CXE)—~C*"Y(E)  (p>0)

as follows. Let x &€ M and let {e,,:*,e,} be an orthonormal basis of the tangent
space T,(M) of M at x. For any p—1 tangent vectors u,,---,u,_, at x, put

(a*n)x(ulx'“)uﬁ—l) = - k2=1 (De,ﬁ)x(elnul)'“)up_l):

where (D, 7), denotes the value of D7 at x for any vector field X such that X,=
ex. Then (0%*7), is an alternating (p—1)-linear map of T (M) into E,, the fiber
of E over x, and the assignment x — (0*7), defines an E-valued (p—1)-form 0*6.
For any E-valued O-form 6, we define 8%9 = 0.

The Laplacian [] for E-valued differential forms is defined as

[] = 00*4-0*0.

The curvature R of the covariant differentiation D in E is a Hom (E, E)-
valued 2-forms given by

R(X» Y)‘P = DX(DY¢’)—DY(DX¢)"D[X,Y]¢’

for any section @ of E and for any vector fields X and Y in M. We shall denote by
{8,m) the scalar product of two E-valued p—forms, that is, <6, 7> is the smooth
function on M given by
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)= 33 Blewyrsn)m(ei, e)>,

f10..00

where {e,,---,¢,} denotes an orthonormal basis of T,(M).
Now we prove the following

Theorem 1. Let 6 be an E-valued 1-form. Then
<8, 6> = A0, 6>+<DO.DOY+ 4,

where A denotes the Laplacian of the Riemannian manifold M and A denotes a
smooth function in M defined as follows :

Ax) = 2Ry, €:)0(e;), O(e:)>+ 32 <O(S(e)), 6(e:)>,

where {e,,--,e,} is an orthonormal basis of T (M) and S denotes the endomorphism
of T (M) defined by the Ricci tensor S of M, i.e. S(e;) = > Sy; e
k

Proof. Fix a point xM and let {e,---,e,} be an orthonormal basis of
T.(M). We can choose 7 vector fields E,,-- ,E, in M such that E;(x) = e; and (Vg,
E)), = 0for i, k = 1,---,n. Then, because V_E; are zero for 7, s = 1,..-, n, we
have

(0%00)(e;) = — 23 (D.,00)(es, &) = — 22 D, ((00)(E, Ey))
= — 22 D.((Dg0)(E,)—(De,0)Ey))
= S (De,Def)e)— 5 (De,Di,b)e).
On the other hand, 8*0 = — 3 g*(Dy0)(E,) where () is the inverse matrix of
the matrix (g(E,, E,)), we have
(00%0)(e;) = D.(0%0) = — 2 (e )(D.0)(e;) — 23 8%e((Dg,O)(ES))
= — 2 e((DeI)E,)) = —23 (D De0)es),

because V, E, = 0 at x.
Therefore we obtain

(D0)e) = 22 (D, Dgi—Dg,Dg,)0)(e;) — 23 (Dg,De b))
Since [E,, E;] = 0 at x, we have
((Dg,Dg;—Dg,Dg,)0)(es) = ([Des» De;]—Dig, £:)0) (&)
= Re,, e;)(0(e.)—O(R(e., €;)e,).
Therefore
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9,65 = S (TI0Y), (e
— 3 CRle, e)fle.), Be>+ X 0(S(e), 0e)
— 5 {(Ds.D5)e), 6(e)>
Now by a local computation we see ;hat
— S (D5.Ds0)e), 6(e))
— (D9, DO>(x)+ (A0, ).
Thus we have proved that
<16, 0> = %A<6, 0>-+<DO, DO>+ A.
Corollary 1. Let 0 be an E-valued 1-form. Assume that [0 =0 and
ALB,05=0. Then we have A<0 everywhere on M.

Assume now that M is compact and oriented. Then we can define the inner
product (6, ) of two E-valued p—forms by

6,7) = SM<0, >l

Then we obtain from Theorem 1 the following corollary.

Corollary 2. Let 6 be an E-valued 1—form such that [ 10 = 0. Then we have
(09, Do)+ | 4x1=0.
M

If A = 0 everywhere on M, then we have A = 0 and D = 0.
We remark that the operator 8* is the adjoint operator of 9, i.e.
(39, n) = (0, 8%n)
for any 8 € C?(E) and » & C?*'(E) and hence we have
(16, 6) = (06, 36)+-(0*9, 0*0).
Therefore, if M is compact, [ ] = 0 if and only if 39 = 0 and 8% = 0.

2. Let M be an n—dimensional Riemannian manifold isometrically immersed
in a Riemannian manifold M’ of dimension #n 4+ p. We shall denote by N(M)
and « the normal bundle and the second fundamental form of M [3]. The
second fundamental form ¢ is an N(M)-valued symmetric 2—form on M.

In the following we put
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E = Hom (T(M), N(M)) = T* (M) @ N(M)

and we interprete « as an E-valued 1-form @ as follows: For any vector field X
in M, B(X) is a section of E such that

BX)-Y = a(X, Y)
for all vector field ¥ in M. Then we have

B(X)-Y = B(Y)-X.
We call also B the second fundamental form of M.

A metric along the fibres of E is defined naturally by the Riemann metrics of
M and M’ and a covariant derivation Dy in E is also naturally defined by the cova-
riant differentiation Vx in M and D% in N(M), where for any normal vector £ of
M, D%E is defined as the normal component of V’£, where Vy’ denote the cova-
riant differentiation in the Riemannian manifold M’ (See [3]).

Let @ be a section of E. We may regard ¢ as an N(M)-valued 1-form on M

and we have
(Dxp)(Y) = Dx(p(Y))—p(VxY),
<DX¢’ '\J’>+<¢’ DX‘!’> = X<¢: ’\l’>
for any sections @ and +r of E.

The following Proposition 1 may be considered as an interpretation of the
equation of Codazzi in our formalism.

Proposition 1.  Assume that M’ is a Riemannian manifold of constant sec-
tional curvature. Then the second fundamental form B of M satisfies the equation

0B =0.

Proof. By a straightforward computation we see that

0B(X, Y))(2) = {Dx(a(Y, 2))—a(VxY, Z)—a(Y, VxZ)}
— {Dy(a(X, Z))—a( vX, Z)—a(X, VyZ)}

and the right hand side is 0 by [3, Vol. II, P. 25, Cor. 4.4].
For each normal vector » € Nx(M) we define an endomorphism 4, of

T.(M) by the formula
<Av(u)) ) = <6(u)v7 vy

for any tangent vectors u, ve T (M). The mean curvature normal n of M is a
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normal vector field in M such that
L1 a, — G0
n

for any » € N (M) and x € M.

M is said to be minimal in M’ if the mean curvature normal vanishes at each
point, that is, if Tr A, = O for any » & N, (M) and x & M.

We say that M has a constant mean curvature if the mean curvature normal
7 is parallel, that is, D7 = 0 for any vector field X in M.

Let v be a normal vector field. Then we have Tr A, = n {v, 7> and hence

X-Tr A,=n{{D%v,7)>+<v, D§n>}. Therefore M has a constant mean curva-
ture, if and only if

X -TrA4, = TrAD}r,

for any normal vector field » and any vector field X in M.

Proposition 2. Let M’ be a Riemmanian manifold of constant sectional cur-

vature. Then the second fundamental form 3 of M satisfies the equation 0*3 = 0 if
and only if M has a constant mean curvature.

Proof. Let x be a point in M and let {e,,---,e,} be an orthonormal basis of
T.(M). Let E,,.-- ,E, be vector fields in a neighborhood of x such that (E,), = e;
and Vg E, = Oatxfori, k= 1,.--,n. Let(g*”) the inverse matrix of the matrix
(<E., E»). Then 8*8 = —g*(Dg,B)E,)> and(0*8)-E, — —g*(D,B)(E.)- Es.
Since(Dg,B)(E)E, = Dg,(a(E,, E,))—a(Vg,E,, E)—a(E,, Vg,E,) and since «
is symmetric, we get(Dg,B)(E,) E, = (Dg,B)(E,)E,. On the other hand, by
Proposition 1, we have 98 = 0 and hence (Dg,Q)(E,) = (Dg,B)(E;), hence

(Dg,B)EE, = (DgtB)E})-E,. Therefore, for any normal vector field », we
have

(0*B)-Ey, v) = —g"(DeBNENE;, v)
= —g"{Dgy((Ey, E,)), v)—<La(VeiEy, E), v>

_<a(Et: VEkEs)J V>}'
Now

g Dg(a(Ey, E,), v>
= g{EKa(Ey E,), v)—<a(E,, E,), D>
= EW(g" <y, Ey), v))—(Epg" )y, Ey), vy —g"a(Ey, Ey), Drgr)
= E(T,4.)—T,ApLy—Epg™ - {a(E,, Ey), v).

1) We omit here the summation signs.
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Since Vg, E; = 0 at x, we have E,g* = Oatx. Therefore we get from the above
that

{(O*B)E,, v)(x) = TrApL,—E(Tr 4,)

at x for k = 1, 2,---, n and hence for any vector field X we have {(0*B)X, v>(x)
=TrdpL,—X(Trd,)at x. Since x is an arbitrary point of ;M and » is an arbitrary
normal vector field, we see from the above equation that 8*8 =0 if and only if

M has a constant mean curvature.
From Propositions 1 and 2 we get the following

Theorem 2. Let M be a Riemannian manifold immersed isometrically into a
Riemannian manifold M’ of constant sectional curvature. Let (3 be the second funda-
mental form of M regarded as a Hom (T (M), N(M) )—valued 1-form. Then (3 satis-
fies the equation |3 = 0, if M has a constant mean curvature. Conversely, if M is
compact and orientable and [ |3 = 0, then M has a constant mean curvature.

3. We shall discuss in this section some applications of Theorems 1 and
2. Let M be a Riemannian manifold immersed isometrically into a Riemannian
manifold M’ of constant sectional curvature ¢. Letx & M and let {¢,,---, ¢,} and
{v,,*+-,v,} be orthonormal bases of T, (M) and N (M) respectively. We shall
denote by 4,(a = 1, 2,---,p) the endomorphism of T,(M) defined by{d,u ,v) =
{B(u)-v, v,> and put A,-¢; = 37 (4,)le;; Then we have the following Gauss

equation:
(3.1) Ryij = c{8ui81;— 8,811+ 23 {(A)i(4a)i—(4a)5(Aa) i,

where R,;,; denote the components of the curvature tensor with respect to the
basis {e,,-,e,} of T,,(M). Then the endomorphism S of T, (M) defined by S(e;)
= 21 8,,(e;) with S, ; = > Ry ; is of the form

1 k

(3.2) S = c(n—1)[+>(Tr 4,)4,—> 42,
where I denotes the identity endomorphism of T,(M).
Let K be the scalar curvature of M. Then K(x) = Tr S = ¢(n-1)n+

SV (Tr A,)*—> Tr A% The value 7(x) at x of the mean curvature normal 7 is

given by n(x)zl_z Tr A,-v, and hence #*(n, 7)(x)=>"(Tr 4,)>. Analogously
n a a
we have (B, B)(x) = >)Tr 4Z. Hence we get

(3.3) K = c(n—D)n+n*Cn, n>—<B, B,
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where B and 7 denotes the second fundamental form and the mean curvature nor-
mal of M respectively. For any Riemannian vector bundle E over M we have de-
fined the endomorphism R(x, v) of the fiber E,, where u, v € T, (M). Let E =
Hom(T(M), N(M) and let ¢ € E,. Then R(u, v) @ is an element of E, = Hom
(T.(M), N,(M)) such that

(34 (R(u, 2)p)(w) = R'(u, v)(w)p)—p(R(u, v)w),

where u, v, w € T, (M)and R* denotes the curvature of the Riemannian vector
bundle N(M).

Let » be a normal vector of M at x and let IV be a normal vector field such

that N, = v. Let X and Y be vector fields in M such that X, = uand Y, =o.
Then we have

Ri(u, v)v = (DxD$—D3D%—D*x 1) N

at x.
Denote by V’ the covariant derivation in the ambiant space M’. Then we

have
VY =VyY+a(X,Y),
Vx’'N = —AN(X)+DxN.

We see from these two equations that the normal component (R'(X, Y)N)'of R’
(X, Y)N, where R’ denotes the curvature tensor of M;, is equal to RY(X, Y)N
—a(An(Y), X)+a(Ax(X),Y). Since M’ is of constant curvarute R'(X, Y) N
=c{{N, Y> X—<(N, X>Y} = 0 and hence we get RY(X, Y)N = —a(4y(X),Y)
+a(An(Y), X). Thus we have

R(u, v)v = —a(4wu, v)+a(4.0, ).
In particular

R (u, v, = —a(A4u, v)+a(u, 4,9).
Since a(4,u,v) = 2_‘, La(Au, v), vyov, = Eb (4,4.u,v) vy
and a(u, A,9) = ; <A, Aoov, = ; <A Az, vov,

we get

(3.5) Rt(u, v)v, = ; {[A4,, 4]u, vOv,.

Now by Theorem 1, we have

B, B> = é—+A<B, B>+<DB, DB>+A4,
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where
(3.6) A(x) = ,Z]] {R(e;, €)B(e;), ,B(e,.)>—f—2 <B(S(e;), B(e;)>.
Now
3 BS(e, Ble)> = T <a(S(en), e;), alens >
= 23 <AuS(e), e;7<Aule;), €7 = 22 Tr (SA47)
and by (3.2) we get
(3.7) 23 <B(S(e;), Ble:)>
= ¢(n—1) za] Tr Aﬁli—nz; Tr A,,-Tr(A,,A';’)—aij Tr(A4343).
On the other hand, , ,
?.; (Re;, €)Be;), Ble)>
=i§ (R (e e)ae ex), oles, ek)>—’;k<a(ei’ R(e;, e;)es), ale:, ex))
=2 azb} (A g, e><Ase;, > R (e,, (,3,.’)1/“1/,,>
—:% Z} {Age; R(e;, e;)e <A qe;, )
and by (3.5), the first term equals%} Tr(4,4,[4,, 45]) = — ;‘b Tr(A4242)+ ?Jb
Tr(A4,A4,)° and by the Gauss equat’ion (3.1) the second term ;:quals —c Z (Tr
A+ 3 THAD— 5 (TH(AA)+ 5 Tr( 4,4,

Therefore we have

(3’8) g <R(ew et‘)B(ej)7 Ie(ea)>
= ¢ 31 Tr Ai—c S(Tr A~ 3 Tr(A242) — 3 (Tr(A,4,))+
+2 3 Tr(A,A,)

Then we get from (3.6), (3.7) and (3.8) that
(3.9) Ax) =en>Tr A3—c > (Tr 4,)—>3 (Tr(4,4,))°
a a a,b
IV Tr A, Tr(A, A9+ 3 Tr{A,, A,
a,b a,b

Now let A{”,-++,A" be eigen-values of 4, and let {e{*,---,e;°{ be an orthonormal
basis of T,(M) such that A, = APe®(i=1,---,n, a = 1,---,p).

We shall denote by K7 the sectional curvature for the 2—plane spanned by
ei® and e, 7 =+ j.

We show that
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(10 AW =T IOCAPKG -+ S TrA,, AL
Vi< a,b
We write A(x) in the following form:
(3.11) A(x) = B(x)+ 3 Tr A, Tr(4,48)— 3 (Tr(A,4,)+
EEr ¥

+; Tr[AaJ Ab]z:

where

(3.12)  B(x) = > {cen Tr AZ—c(Tr A,)*—(Tr A2+ Tr A4,-TrAl}.

Now by a lemma of Nomizu-Smyth [4] we have

(3.13) cn Tr A2—¢(Tr A,)—(Tr A2+ Tr 4,-Tr(4,)
= E (AP =AY (e+AFN)

for each a. Now fix an index a and let
A =21 (Ap)les”  (b=1,2,---,p)

Then we have (4,); =8\{ and hence
(3.14) (Aads); = MPy(Ay))s (ApAa)s = (Ay) NS
By the equation of Gauss we have
K = R, o, e, e”)
= S (AAN— S (A AN
= NS+ (Ao)i(Ae)j— 20 (AW)i(Ao)i-
Hence we have
A P (AN
= (MPAPYE S+ (P!
— 23 (WP A(Ab)i(Ae)s-
This equality holds also for 7 = j trivially if we define K% = 0.
Then by (3.14)
3N —APFEANMD) = T MO AP (A APAS)

=3 (xé“)—xg'”YK‘,f?—% 315 (MO AP AN M) ()]
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- % 20 (vP)(AL): 23 (Ap) = 2 23 M(Ay)i 23 V()
+ 20 (o) 2}

— S P NPFKG 3 TrA,, A
b

i<j

— 2{Tr A4,-Tr(424,)—(Tr(4,4,))}.
ba
Then we obtain from (3.11), (3.12) and (3.13) the equality (3.10).
Now we cite the following two lemmas from [1].
Lemma 1. Let A and B be symmetric n X n matrices. Then
Tr[A, B =z —2Tr A*-Tr B?,

and the equality holds for non-zero matrices A and B if and only if A and B can be
transformed simultaneously by an orthogonal matrix into scalar multiple of A and B

respectively, where

010

o)

Lemma 2. Let A, A, and A, be n X n symmetric matrices and if

(3.15) . (1) (I)I 0 .
A: —_— ) B:

ojo

Tr[A4,, A, = —2Tr A2-Tr A2
for 1 < a < b < 3, then at least one of the matrices A, must be zero.

By Lemma 1, we have

% N Tr[4,, A = — D) Tr A2-Tr A = —2 3 Tr A%-Tr A2.
ab azb a<lb
Put S, = Tr A% Then >} S, = (B, B>(x).
Since
0 =<3 (S,—8Se) =2 (Sa+S8)—2>3S.S,
alh alh alh
= (-1 823 8.8,
a alh
— (DI SN2 5 8.5} -2 5 5.5,
= (P_1)<B: B>2(x)_2paz<bSaSb

we have
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a<lb

—2318,8, = — C‘%kﬁ, B> (x)

ane here the equality holds if and only if S, = S, for a,b=1,.--,p. Therefore
we get

(3.16) Tr{4,, A, = — (P—;—l)w, 8" (%)

1
—E a,b
and the equality holds if and only if Tr A2 = Tr 4} = Tr 43 fora, b=1,---,p and
either A4, are all zero except possibly one of them or 4, are all zero except two
of them, say 4, and 4,, and they can be transformed simultaneously by an ortho-
gonal matrix into scalar multiple of the matrices of the form (3.15). Thus we ob-
tain from (3.10) the inequality

(3.17) Y OPEDIDY (x§“>—x§“))2K§‘§’—1%l<B, B(x).

Assume now that the scalar curvatures of M are bounded below by a positive
constant d. Then

ST OAFKS 2 d 5T (MO APY

and <
M=) = (1= 1)Tr A5—2 S MNP
—2 5 MPAP = Tr Ai—(Tr A,)

and hence

332 MO—=A) = ndB, B(x)—n*Cn, (x),

where 7 denotes the mean curvature normal of M. Thus we get the following
inequality

(3.17) 4 g(dn—f%lw, B> KB, By—dn*<n, >

at each point of M.

We obtain from Corollaries 1 and 2 of Theorem 1 and Theorem 2 the follow-
ing

Theorem 3. Let M be an n-dimensional, Riemannian manifold with sectional
curvatures bounded below by a positive constant d. Assume that M is immersed in a
Riemannian manifold M’ of constant sectional curvature of dimension n-+p and that
M has a constant mean curvature. Then, if M is compact and orientable or if the
length of the second fundamental form 3 of M is constant, then we have
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(3.18) 0>4 g{dn—f%@, B>}<B, B>—dn*{n, mp

at each point of M, where n denotes the mean curvature normal of M which is parallel
and {n, n)> is a constant.

Now assume M is compact and oriented and let k= (%, n>. Then integrating
both sides of the inequality (3.18) we obtain

ank "1 = SM{dn—l‘%l«e, B> 1B, B+1

and we have the equality here if and only if
2L P —1
dn’k = {dn— e <B, B <B, B>

and this implies also that 4 = 0 and that @ is parallel by Theorem 1. Then
{B, B> must satisfy the quadratic equation (p—1)x*—p dn x-+pn*k=0 and since
the discriminant of this equation should be positive we should have the inequality

dg@‘_l)_
4
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